DOI QR코드

DOI QR Code

Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection

피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측

  • Seok, Ho-Sik (Dept. of Artificial Intelligence and Data Science, Korea Military Academy)
  • Received : 2022.09.20
  • Accepted : 2022.09.25
  • Published : 2022.09.30

Abstract

It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.

본 논문에서는 인간의 피부섬유모세포(Human dermal fibroblasts)로부터 확보한 전사체 정보를 활용하여 나이를 예측하는 방법을 소개한다. 제안 방법에서는 훈련을 통해 확보한 분류기 및 회귀 모델을 이용하여 샘플이 속한 적합한 연령 그룹을 선택한 후, 선택된 연령 그룹에 속하는 훈련 데이터의 관측값을 활용하여 구체적인 연령을 예측한다. 연령을 예측하려는 샘플이 입력되면 복수 개의 판별 규칙이 순서대로 실행되는데, 개별 판별 규칙에서는 분류기와 회귀 모델을 동시에 실행하여 해당 판별 규칙에 대한 선택조건이 만족되는지 여부를 확인한다. 선택 조건이 만족될 경우 판별 규칙의 타겟 연령 그룹에 속하는 데이터를 이용하여 훈련된 회귀 모델로 연령을 예측하며, 선택 조건이 만족되지 않으면 후속 판별 규칙을 실행한다. 공개 데이터에 대하여 실험한 결과 기존 연구에서 달성한 7.7년의 평균 예측 오차보다 우수한 5.7년이라는 평균 예측 오차를 달성함을 확인하였다.

Keywords

References

  1. P. Benfey and T. Mitchell-Olds, "From Genotype to Phenotype: Systems Biology meets Natural Variation," Science, vol.320, pp.495-497, 2008. DOI: 10.1126/science.1153716
  2. A. Drouin, et al., "Predictive Computational Phenotyping and Biomarker Discovery using Reference-free Genome Comparison," BMC Genom., vol.17, pp.754, 2016. https://doi.org/10.1186/s12864-016-2889-6
  3. A. Young, et al, "Deconstructing the Sources of Genotype-phenotype Associations in Humans," Science, vol.365, pp.1396-1400, 2019. DOI: 10.1126/science.aax3710
  4. A. Drouin, et al., "Interpretable Genotype-tophenotype Classifiers with Performance Guarantees," Sci. Rep., vol.9, p.4071, 2019. https://doi.org/10.1038/s41598-019-40561-2
  5. A. Smith, et al., "Standard Machine Learning Approaches outperform Deep Representation Learning on Phenotype Prediction from "Transcriptomics Data," BMC Bioinform., vol.21, pp.119, 2020. DOI: 10.1186/s12859-020-3427-8
  6. Z. Tang, et al., "Deep Learning of Imaging Phenotype and Genotype for Predicting Overall Survival Time of Glioblastoma Patients," IEEE Trans. Med. Imaging, vol.39, pp.2100-2109, 2020. DOI: 10.1109/TMI.2020.2964310
  7. J. Fleischer,et al., "Predicting Age from The Transcriptome of Human Dermal Fibroblasts," Genome Biol., vol.19, p.221, 2018. DOI: 10.1186/s13059-018-1599-6
  8. S. Horvath, "DNA Methylation Age of Human Tissues and Cell Types," Genome Biol., vol.14, p.3156, 2013. DOI: 10.1186/gb-2013-14-10-r115
  9. R. Zbiec-Piekarska, et al., "Development of a Forensically Useful Age Prediction Method based on DNA Methylation Analysis," Forensic Sci. Int. Genet., vol.17, pp.173-179, 2015. DOI: 10.1016/j.fsigen.2015.05.001.
  10. J. Tigges, et al, "The Hallmarks of Fibroblast Ageing," Mech. Ageing Dev., vol.138, pp.26-44, 2014. DOI: 10.1016/j.mad.2014.03.004.
  11. J. Phillip, et al., "Biophysical and Biomolecular Determination of Cellular Age in Humans," Nat. Biomed. Eng, vol.1, 2017.
  12. Y. Freund and R. Schapire, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting," J. Comput. Syst. Sci., pp.119-139, 1997, DOI: 10.1006/jcss.1997.1504
  13. K. P. Murphy, Machine learning: a probabilistic perspective, The MIT Press, Cambridge, pp.492-493, 2012.
  14. F. Pedregosa, et al., "Scikit-Learn: Machine Learning in Python," J. Mach. Learn. Res., vol.12, pp.2825-2830, 2011.