• Title/Summary/Keyword: sensorless speed Control

Search Result 600, Processing Time 0.029 seconds

High-Performance Sensorless-Control of PMSM Using Back-EMF and Reactive Power (역기전력 및 무효전력에 의한 영구자석 동기전동기의 센서리스 속도제어 개선)

  • Lee, Guen-Bo;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.740-742
    • /
    • 2010
  • This paper investigates a high-performance strategy for speed sensorless control of a permanent magnet synchronous motor. Two speed sensorless controls using back-EMF and reactive power are analyzed in this paper, and these two speed estimations are appropriately applied according to the steady and transient states for a high-performance sensorless control. The proposed sensorless control algorithm has a better performance compared to the conventional control algorithms.

PMSM Sensorless Operation for High Variable Speed Compressor (고속압축기 구동 PMSM을 위한 센서리스 운전)

  • 석줄기;이동춘;황준현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.676-681
    • /
    • 2002
  • This paper presents the implementation and experimental investigation of sensorless speed control for a variable-speed PMSM(Permanent Magnet Synchronous Motor) in super-high speed compressor operation. The proposed control scheme consists of two different sensorless algorithms to guarantee the reliable starting operation in low speed region and full torque characteristics using the vector control in high speed region. An automatic switching technique between two control modes is proposed to minimize the speed and torque pulsation during the switching instant of control mode. A testing system of 3.3㎾ PMSM has been built and 90% load test results at 7000r/min are presented to examine the feasibility of proposed sensorless control scheme.

A Speed Sensorless Control of Induction Motors Based on Feedforward Quick Torque Response Control Technique (피드포워드적 토크고속응답제어법을 이용한 유도전동기의 속도센서레스 제어)

  • Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.70-78
    • /
    • 1999
  • The vector controlled induction motor(I.M) with speed sensor has been widely used for variable speed drive systems. In these application fileds, speed sensorless control are expected strongly to progress reliability, simplicity and cost performance of I.M and to expand its application part. This paper describes a novel speed sensorless control method of I.M based on feedforward quick torque response control technique. Especially, this paper aimed at the realization of sensorless control in the very low speed region, The proposed method can be formulated simply from a motor circuit equation and conducted easily by detecting primary motor currents and a voltage command at every sampling time. Throughout some results of numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter, the validity of the method was successfully confirmed.

  • PDF

Speed Controller Transition Method for I-F Operation and Sensorless Operation of Permanent Magnet Synchronous Motor (영구자석 동기 전동기의 I-F 구동과 센서리스 구동을 위한 속도 제어 절환 기법)

  • Kim, Dong-Uk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.543-551
    • /
    • 2019
  • Permanent Magnet Synchronous Motors(PMSMs) have a wider range of applications due to their high output density and high efficiency. PMSMs are used not only in high-power density, high-performance motor-driven systems such as vehicle and robots, but also in systems where cost-cutting is very important, such as washing machines, air conditioners and refrigerators. To reduce costs, position sensorless control is required, which is generally difficult to be used under conditions of starting the motor. Thus, the I-F speed control that rotates the current vector at any speed in the starting procedure should be used at first, and then the sensorless speed control could be applied after PMSM rotates above a certain speed. Speed control performance in I-F speed control and sensorless speed control is very important. And more speed control performance should be maintained even in the transient in which the two control techniques are changed. In this paper, the speed controller transition method from I-F speed control to sensorless speed control of permanent magnet synchronous motor is proposed. Experiments were carried out on the washing machine drive system to verify the performance of the proposed technique.

Vector Control of Interior Permanent Magnet Synchronous Motor without Speed Sensor (속도센서 없는 매입형 영구자석 동기전동기의 벡터제어)

  • Choi, Jong-Woo;Lee, Seung-Hun;Kim, Heung-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1241-1249
    • /
    • 2007
  • Lately, many approaches of speed sensorless control method for Interior Permanent Magnet Synchronous Motor(IPMSM) ha, been developed. This paper proposes a novel sensorless algorithm for speed estimation of IPMSM. First of all, proposes sensorless method estimates flux of rotor using foundational voltage equation of IPMSM and then estimates position and speed of rotor using Phase Locked Loop(PLL). Proposed sensorless algorithm demonstrated through simulation using Matlab simulink and experiment.

A Robust Sensorless speed control of Sensorless BLDC Motor (센서리스 BLDC 전동기의 강인한 속도 제어)

  • Kim, Jong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The sensorless speed control technique for BLDC motor using digital IP control is proposed in this paper for advanced speed characteristic which is robust to motor parameters and load variations. The sensorless drive of BLDC motor using terminal voltages is affected by load or speed because it uses analog filters to estimate the rotor position. For this reason, the robust speed controller with the accurate rotor position estimator is needed for sensorless control which is robust to load and insensitive to motor parameters. The constant speed robust to load variation and the stable sensorless control of BLDC motor robust to the increase or decrease of speed with constant load is implemented using digital IP control in this paper. The validity to these is established with experimentation.

  • PDF

A Novel Sensorless Low Speed Vector Control for Synchronous Reluctance Motors Using a Block Pulse Function-Based Parameter Identification

  • Ahmad Ghaderi;Tsuyoshi Hanamoto;Teruo Tsuji
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2006
  • Recently, speed sensorless vector control for synchronous reluctance motors (SYRMs) has deserved attention because of its advantages. Although rotor angle calculation using flux estimation is a straightforward approach, the DC offset can cause an increasing pure integrator error in this estimator. In addition, this method is affected by parameter fluctuation. In this paper, to control the motor at the low speed region, a modified programmable cascaded low pass filter (MPCPLF) with sensorless online parameter identification based on a block pulse function is proposed. The use of the MPCLPF is suggested because in programmable, cascade low pass filters (PCLPF), which previously have been applied to induction motors, the drift increases vastly wl)en motor speed decreases. Parameter identification is also used because it does not depend on estimation accuracy and can solve parameter fluctuation effects. Thus, sensorless speed control in the low speed region is possible. The experimental system includes a PC-based control with real time Linux and an ALTERA Complex Programmable Logic Device (CPLD), to acquire data from sensors and to send commands to the system. The experimental results show the proposed method performs well, speed and angle estimation are correct. Also, parameter identification and sensorless vector control are achieved at low speed, as well as, as at high speed.

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

Sensorless Speed Control of PMSM Based on Novel Adaptive Control with Compensated Parameters (새로운 보상 파라미터를 가지는 적응제어 기반 영구자석 동기전동기의 센서리스 속도제어)

  • Nam, Kee-Hyun;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.956-962
    • /
    • 2013
  • Recently, sensorless controls, which eliminate position and speed sensor in a permanent magnet synchronous motor drive, have been much studied. Most sensorless control algorithms are based on the back-EMF and speed estimations which are obtained from the voltage equations. Therefore, the sensorless control performance is largely affected by the parameter errors of a motor. This paper investigates a novel adaptive control with the parameter error compensation for the speed sensorless control of a permanent magnet synchronous motor. The proposed parameter estimation is obtained from the d-axis current error between the real and estimated currents. The proposed algorithm is verified through the simulation and experimentation.

A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control (직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF