• Title/Summary/Keyword: sensor-sensitivity

Search Result 1,911, Processing Time 0.025 seconds

A Study of the Dependence on Incidence Angle of the Sensitivity of an Extraordinary Optical Transmission Sensor (특이 광 투과 센서에서 민감도의 입사각 의존성 연구)

  • Kwon, Yongjae;Lee, Seunghun;Kim, Taeyeon;Kim, Kyujung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.126-132
    • /
    • 2021
  • In this research, we have investigated the sensitivity of an extraordinary optical transmission sensor depending on the angle of incident light. Three types of light, including a collimated beam and focused beams (4× and 10×), were designed for the sensor system. To compare the sensitivity of the sensor, we measured transmittance spectra using deionized water (n=1.333) and refractive-index-matching oils (n=1.360 and 1.380). Those spectra were analyzed in terms of redshifting of the peak, so that we could determine the sensitivity. The sensitivity tended to increase when the collimated beam is used on the system, and we have concluded that the sensitivity could be affected by the incidence angle on an extraordinary optical transmission sensor.

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment

  • Li, Mo;Liu, Kun;Jing, Wencai;Peng, Gang-Ding
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.

Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System (다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

A Polysilicon Field Effect Transistor Pressure Sensor of Thin Nitride Membrane Choking Effect of Right After Turn-on for Stress Sensitivity Improvement (스트레스 감도 향상을 위한 턴 온 직후의 조름 효과를 이용한 얇은 질화막 폴리실리콘 전계 효과 트랜지스터 압력센서)

  • Jung, Hanyung;Lee, Junghoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • We report a polysilicon active area membrane field effect transistor (PSAFET) pressure sensor for low stress deflection of membrane. The PSAFET was produced in conventional FET semiconductor fabrication and backside wet etching. The PSAFET located at the front side measured pressure change using 300 nm thin-nitride membrane when a membrane was slightly strained by the small deflection of membrane shape from backside with any physical force. The PSAFET showed high sensitivity around threshold voltage, because threshold voltage variation was composed of fractional function form in sensitivity equation of current variation. When gate voltage was biased close to threshold voltage, a fractional function form had infinite value at $V_{tn}$, which increased the current variation of sensitivity. Threshold voltage effect was dominant right after the PSAFET was turned on. Narrow transistor channel established by small current flow was choked because electron could barely cross drain-source electrodes. When gate voltage was far from threshold voltage, threshold voltage effect converged to zero in fractional form of threshold voltage variations and drain current change was mostly determined by mobility changes. As the PSAFET fabrication was compatible with a polysilicon FET in CMOS fabrication, it could be adapted in low pressure sensor and bio molecular sensor.

Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device (2 차원 Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Sensitivity Enhancement in Measurement of Hydrogen Gas Dissolved in Oil using Gas Collection Time (가스수집시간을 이용한 유중수소가스 측정감도 향상 연구)

  • Heo, Jong-Cheol;Sun, Jong-Ho;Kang, Dong-Sik;Jeong, Joo-Young;Park, Jung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.539-543
    • /
    • 2009
  • This paper describes the sensitivity enhancement in measurement of the hydrogen gas dissolved in oil using gas collection time. On-line gas measurement is a useful for continuous monitoring of power transformer. Recently many studies on hydrogen gas measurement, due to their simplicity and low price, have been done for transformer monitoring. In measurement of the hydrogen gas in oil, the suitable sensitivity and resolution in the desired ranges of the gas concentrations are needed for the reliable monitoring of power transformers. In this study, the sensor output trends were analyzed with the hydrogen gas collection time which means the time to collect the hydrogen gas before reaction of hydrogen gas sensor. It is indicated that the sensor outputs were increased with the increase of hydrogen gas collection times at the same hydrogen gas concentrations.

On the $SnO_2$ Semiconductor Gas Sensor ($SnO_2$ 소결체 반도체 Gas Sensor에 관한 연구)

  • 박순자;이재열
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.93-98
    • /
    • 1983
  • The sensitivity characteristics of $SnO_2$-based gas sensor prepared by sintering method have been studied at the presence of CO and Propane gas. Samples mixed with 1wt% $La_2O_3$ and 1wt% $PdCl_2$ showed highest sensitivity to CO and propane gas at 250$^{\circ}$C but the addition of $CeO_2$ did not enhance the sensitivity. For slectivity for gas a $SnO_2-La_2O_3$ (1wt%) sample without $PdCl_2$ showed better results. A sample sintered sintered at 115$0^{\circ}C$ has shown the optimum condition in sensitivity and electroding

  • PDF

Magnetic Sensitivity Improvement of Silicon Vertical Hall Device (Si 종형 Hall 소자의 자기감도 개선)

  • Ryu, Ji-Goo;Kim, Nam-Ho;Chung, Su-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2011
  • The silicon vertical hall devices are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$, interface and n-epi layer without $n^+$buried layer to improve the sensitivity and influence of interface effects. Experimental samples are a sensor type I with and type H without p+isolation dam adjacent to the center current electrode. The experimental results for both type show a more high current-related sensitivity than the former's vertical hall devices. The sensitivity of type H and type I are about 150 V/AT and 340 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Micro-Machined Capacitive Linear Encoder with a Mechanical Guide (마이크로 머시닝으로 제작한 기계적 가이드를 갖는 정전용량 선형 인코더)

  • Kang, Daesil;Moon, Wonkyu
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.440-445
    • /
    • 2012
  • Contact-type Linear Encoder-like Capacitive Displacement Sensor (CLECDiS) is a novel displacement sensor which has wide measurable range with high resolution. The sensor, however, is very sensitive to relative rotational alignment between stator and mover of the sensor as well as its displacement. In addition to, there can be some disturbances in the relative rotational alignment, so some noises occur in the sensor's output signal by the disturbances. This negative effect of the high sensitivity may become larger as increasing sensitivity. Therefore, this negative effect of the high sensitivity has to be compensated and reduced to achieve nanometer resolution of the sensor. In this study, a new type capacitive linear encoder with a mechanical guide is presented to reduce the relative rotational alignment problem. The presented method is not only to reduce the alignment problem, but also to assemble the sensor to the stage conveniently. The method is based on a new type CLECDiS that has mechanical guide autonomously. In the presented sensor, when the device is fabricated by micro-machining, the guide-rail is also fabricated on the surface of the sensor. By the direct fabrication of the guide-rail with high precision micro-machining, errors of the guide-rail can be reduced significantly. In addition, a manual yaw alignment is not required to obtain large magnitude of the output signal after the assembly of the sensor and the stage. The sensor movement is going to follow the guide-rail automatically. The prototype sensor was fabricated using the presented method, and we verify the feasibility experimentally.

A Design of Pressure Sensor for Improving Linearity at Low Pressure Range (저압에서의 선형성을 향상시키기 위한 압력센서의 설계)

  • Lee, Bo-Na;Lee, Moon-Key
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 1996
  • In this paper, We have designed silicon pressure sensor with center-bossed diaphragm which improving sensitivity and linearity by reducing diaphragm deflection. Designed center-bossed pressure sensor showed maximum deflection of $0.125{\mu}m$, maximum stress of $2.24{\times}10^7 Pa$ and sensitivity of 27.67 mV/V.psii. As a result, diaphragm deflection was reduced to 1/160 that of diaphragm thickness and 1/35 that of square diaphragm. Also, sensitivity was increased 19 times compared to square diaphragm.

  • PDF