Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.1.014

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment  

Li, Mo (School of Electrical Engineering and Telecommunications, University of New South Wales)
Liu, Kun (School of Electrical Engineering and Telecommunications, University of New South Wales)
Jing, Wencai (College of Precision Instrument & Opto-electronics Engineering, Tianjin University)
Peng, Gang-Ding (School of Electrical Engineering and Telecommunications, University of New South Wales)
Publication Information
Journal of the Optical Society of Korea / v.14, no.1, 2010 , pp. 14-21 More about this Journal
Abstract
Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.
Keywords
Fiber ring laser; Intra-cavity absorption; Gas sensor; Sensitivity enhancement;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 HITRAN Molecular Spectroscopic Database 2004.
2 G. Stewart, K Atherton, H. B. Yu, and B. Culshaw, “An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements,” Meas. Sci. Technol. 12, 843-849 (2001).   DOI   ScienceOn
3 Y. Zhang, M. Zhang, and W. Jin, “Multi-point, fiber-optic gas detection with intra-cavity spectroscopy,” Opt. Comm. 220, 361-364 (2003).   DOI   ScienceOn
4 M. Zhang, D. N. Wang, W. Jin, and Y. B. Liao, “Wavelength modulation technique for intra-cavity absorption gas sensor,” IEEE Trans. Instrum. Meas. 53, 136-139 (2004).   DOI   ScienceOn
5 H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, “Tunable Erbium-doped fiber ring laser for applications of infrared absorption spectroscopy,” Opt. Comm. 275, 379-384 (2007).   DOI   ScienceOn
6 Y. Zhang, M. Zhang, and W. Jin, “Sensitivity enhancement in Erbiumdoped fiber laser intra-cavity absorption sensor,” Sens. Actuators A 104, 183-187 (2003).   DOI   ScienceOn
7 X. Dong, P. Shum, N. Q. Ngo, H.-Y. Tam, and X. Dong, “Output power characteristics of tunable Erbium-doped fiber ring lasers,” IEEE J. Lightwave Technol. 23, 1334-1341 (2005).   DOI   ScienceOn
8 A. Bellemare. M. Karbsek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE. J. Select. Topics Quantum Electron. 7, 22-29 (2001).   DOI   ScienceOn
9 T. Pfeiffer, H. Schmuck, and H. Bulow, “Output power characterisitics of Erbium-doped fiber ring lasers,” IEEE Photon. Technol. Lett. 4, 847-849 (1992).   DOI   ScienceOn
10 S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, “Design optimisation of Erbium-doped fiber ring laser through numerical simulation,” Opt. Comm. 170, 247-253 (1999).   DOI   ScienceOn
11 Y. Zhang, M. Zhang, W. Jin, H. L. Ho, M. S. Demokan, X. H. Fang, B. Culshaw, and G. Stewart, “Investigation of Erbium-doped fiber laser intracavity absorption sensor for gas detection,” Opt. Comm. 234, 435-441 (2004).   DOI   ScienceOn
12 S. Selvakennedy, M. A. Mahdi, M. K. Abdullah, P. Poopalan, and H. Ahmad, “Behavioral investigaions of an Erbiumdoped fiber ring laser through numerical simulations,” Opt. Fiber Technol. 6, 155-163 (2000).   DOI   ScienceOn
13 M. Karasek and J. A. Valles, “Analysis of channel addition/removal response in all-optical gain-controlled cascade of Erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 16, 1795-1803 (1998).   DOI   ScienceOn
14 C. R. Giles and E. Desurvire, “Modeling Erbium-doped fiber amplifiers,” IEEE J. Lightwave Technol. 9, 271-283 (1991).   DOI   ScienceOn
15 V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171-202 (1999).   DOI
16 K. Liu, W. C. Jing, G. D. Peng, J. Z. Zhang, Y. Wang, T. G. Liu, D. Jia, H. Zhang, and Y. Zhang, “Wavelength sweep of intra-cavity fiber laser for low concentration gas detection,” IEEE Photon. Technol. Lett. 20, 1515-1517 (2008).   DOI   ScienceOn