• Title/Summary/Keyword: sensor planning

Search Result 251, Processing Time 0.033 seconds

Oxygen Vacancy Effects of Two-Dimensional Electron Gas in SrTiO3/KNbO3 Hetero Structure

  • Choi, Woo-Sung;Kang, Min-Gyu;Do, Young-Ho;Jung, Woo-Suk;Ju, Byeong-Kwon;Yoon, Seok-Jin;Yoo, Kwang-Soo;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.244-248
    • /
    • 2013
  • The discovery of a two-dimensional electron gas (2DEG) in $LaAlO_3$ (LAO)/$SrTiO_3$ (STO) heterostructure has stimulated intense research activity. We suggest a new structure model based on $KNbO_3$ (KNO) material. The KNO thin films were grown on $TiO_2$-terminated STO substrates as a p-type structure ($NbO_2/KO/TiO_2$) to form a two-dimensional hole gas (2DHG). The STO thin films were grown on KNO/$TiO_2$-terminated STO substrates as an n-type structure to form a 2DEG. Oxygen pressure during the deposition of the KNO and STO thin films was changed so as to determine the effect of oxygen vacancies on 2DEGs. Our results showed conducting behavior in the n-type structure and insulating properties in the p-type structure. When both the KNO and STO thin films were deposited on a $TiO_2$-terminated STO substrate at a low oxygen pressure, the conductivity was found to be higher than that at higher oxygen pressures. Furthermore, the heterostructure formed at various oxygen pressures resulted in structures with different current values. An STO/KNO heterostructure was also grown on the STO substrate, without using the buffered oxide etchant (BOE) treatment, so as to confirm the effects of the polar catastrophe mechanism. An STO/KNO heterostructure grown on an STO substrate without BOE treatment did not exhibit conductivity. Therefore, we expect that the mechanics of 2DEGs in the STO/KNO heterostructures are governed by the oxygen vacancy mechanism and the polar catastrophe mechanism.

Analysis of PM2.5 Pattern Considering Land Use Types and Meteorological Factors - Focused on Changwon National Industrial Complex - (토지이용 유형과 기상 요인을 고려한 PM2.5 발생 패턴 분석 - 창원국가산업단지를 중심으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.2
    • /
    • pp.1-17
    • /
    • 2022
  • This study analyzed the PM2.5 pattern by using data measured for one year from June 2020 to May 2021 by 21 low-cost sensors installed near the Changwon National Industrial Complex in Changwon, Gyeongsangnam-do. For the PM2.5 pattern, the land use types around the measuring points and meteorological factors such as air temperature and wind speed were considered. The PM2.5 concentration was high from November to March in winter, and from 1 to 9 in the morning and early in the morning by time zone. The concentration of PM2.5 was higher as it got closer to the industrial area, but the concentration was lower in the residential area and public facility area. In terms of meteorological factors, the higher the air temperature and wind speed, the lower the concentration of PM2.5. As a result of this study, it was possible to identify the PM2.5 patter near Changwon National Industrial Complex. This result will be useful data that can be used in urban and environmental planning to improve air quality including PM2.5 in urban area in the future.

Evaluation of Geospatial Information Construction Characteristics and Usability According to Type and Sensor of Unmanned Aerial Vehicle (무인항공기 종류 및 센서에 따른 공간정보 구축의 활용성 평가)

  • Chang, Si Hoon;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.555-562
    • /
    • 2021
  • Recently, in the field of geospatial information construction, unmanned aerial vehicles have been increasingly used because they enable rapid data acquisition and utilization. In this study, photogrammetry was performed using fixed-wing, rotary-wing, and VTOL (Vertical Take-Off and Landing) unmanned aerial vehicles, and geospatial information was constructed using two types of unmanned aerial vehicle LiDAR (Light Detection And Ranging) sensors. In addition, the accuracy was evaluated to present the utility of spatial information constructed through unmanned aerial photogrammetry and LiDAR. As a result of the accuracy evaluation, the orthographic image constructed through unmanned aerial photogrammetry showed accuracy within 2 cm. Considering that the GSD (Ground Sample Distance) of the constructed orthographic image is about 2 cm, the accuracy of the unmanned aerial photogrammetry results is judged to be within the GSD. The spatial information constructed through the unmanned aerial vehicle LiDAR showed accuracy within 6 cm in the height direction, and data on the ground was obtained in the vegetation area. DEM (Digital Elevation Model) using LiDAR data will be able to be used in various ways, such as construction work, urban planning, disaster prevention, and topographic analysis.

A Comparative Errors Assessment Between Surface Albedo Products of COMS/MI and GK-2A/AMI (천리안위성 1·2A호 지표면 알베도 상호 오차 분석 및 비교검증)

  • Woo, Jongho;Choi, Sungwon;Jin, Donghyun;Seong, Noh-hun;Jung, Daeseong;Sim, Suyoung;Byeon, Yugyeong;Jeon, Uujin;Sohn, Eunha;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1767-1772
    • /
    • 2021
  • Global satellite observation surface albedo data over a long period of time are actively used to monitor changes in the global climate and environment, and their utilization and importance are great. Through the generational shift of geostationary satellites COMS (Communication, Ocean and Meteorological Satellite)/MI (Meteorological Imager sensor) and GK-2A (GEO-KOMPSAT-2A)/AMI (Advanced Meteorological Imager sensor), it is possible to continuously secure surface albedo outputs. However, the surface albedo outputs of COMS/MI and GK-2A/AMI differ between outputs due to Differences in retrieval algorithms. Therefore, in order to expand the retrieval period of the surface albedo of COMS/MI and GK-2A/AMI to secure continuous climate change monitoring linkage, the analysis of the two satellite outputs and errors should be preceded. In this study, error characteristics were analyzed by performing comparative analysis with ground observation data AERONET (Aerosol Robotic Network) and other satellite data GLASS (Global Land Surface Satellite) for the overlapping period of COMS/MI and GK-2A/AMI surface albedo data. As a result of error analysis, it was confirmed that the RMSE of COMS/MI was 0.043, higher than the RMSE of GK-2A/AMI, 0.015. In addition, compared to other satellite (GLASS) data, the RMSE of COMS/MI was 0.029, slightly lower than that of GK-2A/AMI 0.038. When understanding these error characteristics and using COMS/MI and GK-2A/AMI's surface albedo data, it will be possible to actively utilize them for long-term climate change monitoring.

A Study of the Reactive Movement Synchronization for Analysis of Group Flow (그룹 몰입도 판단을 위한 움직임 동기화 연구)

  • Ryu, Joon Mo;Park, Seung-Bo;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.79-94
    • /
    • 2013
  • Recently, the high value added business is steadily growing in the culture and art area. To generated high value from a performance, the satisfaction of audience is necessary. The flow in a critical factor for satisfaction, and it should be induced from audience and measures. To evaluate interest and emotion of audience on contents, producers or investors need a kind of index for the measurement of the flow. But it is neither easy to define the flow quantitatively, nor to collect audience's reaction immediately. The previous studies of the group flow were evaluated by the sum of the average value of each person's reaction. The flow or "good feeling" from each audience was extracted from his face, especially, the change of his (or her) expression and body movement. But it was not easy to handle the large amount of real-time data from each sensor signals. And also it was difficult to set experimental devices, in terms of economic and environmental problems. Because, all participants should have their own personal sensor to check their physical signal. Also each camera should be located in front of their head to catch their looks. Therefore we need more simple system to analyze group flow. This study provides the method for measurement of audiences flow with group synchronization at same time and place. To measure the synchronization, we made real-time processing system using the Differential Image and Group Emotion Analysis (GEA) system. Differential Image was obtained from camera and by the previous frame was subtracted from present frame. So the movement variation on audience's reaction was obtained. And then we developed a program, GEX(Group Emotion Analysis), for flow judgment model. After the measurement of the audience's reaction, the synchronization is divided as Dynamic State Synchronization and Static State Synchronization. The Dynamic State Synchronization accompanies audience's active reaction, while the Static State Synchronization means to movement of audience. The Dynamic State Synchronization can be caused by the audience's surprise action such as scary, creepy or reversal scene. And the Static State Synchronization was triggered by impressed or sad scene. Therefore we showed them several short movies containing various scenes mentioned previously. And these kind of scenes made them sad, clap, and creepy, etc. To check the movement of audience, we defined the critical point, ${\alpha}$and ${\beta}$. Dynamic State Synchronization was meaningful when the movement value was over critical point ${\beta}$, while Static State Synchronization was effective under critical point ${\alpha}$. ${\beta}$ is made by audience' clapping movement of 10 teams in stead of using average number of movement. After checking the reactive movement of audience, the percentage(%) ratio was calculated from the division of "people having reaction" by "total people". Total 37 teams were made in "2012 Seoul DMC Culture Open" and they involved the experiments. First, they followed induction to clap by staff. Second, basic scene for neutralize emotion of audience. Third, flow scene was displayed to audience. Forth, the reversal scene was introduced. And then 24 teams of them were provided with amuse and creepy scenes. And the other 10 teams were exposed with the sad scene. There were clapping and laughing action of audience on the amuse scene with shaking their head or hid with closing eyes. And also the sad or touching scene made them silent. If the results were over about 80%, the group could be judged as the synchronization and the flow were achieved. As a result, the audience showed similar reactions about similar stimulation at same time and place. Once we get an additional normalization and experiment, we can obtain find the flow factor through the synchronization on a much bigger group and this should be useful for planning contents.

Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation (자동점적관수에 의한 토성별 수분함량 및 장력 변화특성 비교 연구)

  • Kim, Hak-Jin;Ahn, Sung-Wuk;Han, Kyung-Hwa;Choi, Jin-Yong;Chung, Sun-Ok;Roh, Mi-Young;Hur, Seung-Oh
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.341-348
    • /
    • 2013
  • Maintenance of adequate soil tension or content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil tension and content for precision irrigation would allow optimal soil water condition to crops and minimize the adverse effects of water stress on crop growth and development. This research reports on a comparison of soil water tension and content variations in differently textured soils over time under drip irrigation using two different water management methods, i.e. pulse time and required water irrigation methods. The pulse time-based irrigation was performed by turning the solenoid valve on and off for preset times to allow the wetting front to disperse in root zone before additional water was applied. The required water estimation method was a new water control logic designed by Rural Development Administration that applies the amount of water required based on a conversion of the measured water tension into water content. The use of the pulse time irrigation method under drip irrigation at a high tension of -20 kPa and high temperatures over $30^{\circ}C$ was not successful at maintaining moisture tensions within an appropriate range of 5 kPa because the preset irrigation times used for water control could not compensate for the change in evapotranspiration during day and night. The response time and pattern of water contents for all of the tested soils measured with capacitance-based sensor probes were faster and more direct than those of water tensions measured with porous and ceramic cup-based tensiometers when water was applied, indicating water content would be a better control variable for automatic irrigation. The required water estimation-based irrigation method provided relatively stable control of moisture tension, even though somewhat lower tension values were obtained as compared to the target tension of -20 kPa, indicating that growers could expect to be effective in controlling low tensions ranging from -10 to -20 kPa with the required water estimation system.

Effect of Red-edge Band to Estimate Leaf Area Index in Close Canopy Forest (울폐산림의 엽면적지수 추정을 위한 적색경계 밴드의 효과)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.571-585
    • /
    • 2017
  • The number of spaceborne optical sensors including red-edge band has been increasing since red-edge band is known to be effective to enhance the information content on biophysical characteristics of vegetation. Considering that the Agriculture and Forestry Satellite is planning to carry an imaging sensor having red-edge band, we tried to analyze the current status and potential of red-edge band. As a case study, we analyzed the effect of using red-edge band and tried to find the optimum band width and wavelength region of the red-edge band to estimate leaf area index (LAI) of very dense tree canopy. Field spectral measurements were conducted from April to October over two tree species (white oak and pitch pine) having high LAI. Using the spectral measurement data, total 355 red-edge bands reflectance were simulated by varying five band width (10 nm, 20 nm, 30 nm, 40 nm, 50 nm) and 71 central wavelength. Two red-edge based spectral indices(NDRE, CIRE) were derived using the simulated red-edge band and compared with the LAI of two tree species. Both NDRE and CIRE showed higher correlation coefficients with the LAI than NDVI. This would be an alternative to overcome the limitation of the NDVI saturation problem that NDVI has not been effective to estimate LAI over very dense canopy situation. There was no significant difference among five band widths of red-edge band in relation to LAI. The highest correlation coefficients were obtained at the red-edge band of center wavelength near the 720 nm for the white oak and 710 nm for the pitch pine. To select the optimum band width and wavelength region of the red-edge band, further studies are necessary to examine the relationship with other biophysical variables, such as chlorophyll, nitrogen, water content, and biomass.

Present Status and Future Prospect of Satellite Image Uses in Water Resources Area (수자원분야의 위성영상 활용 현황과 전망)

  • Kim, Seongjoon;Lee, Yonggwan
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.1
    • /
    • pp.105-123
    • /
    • 2018
  • Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.

Evaluation of Drainage Improvement Effect Using Geostatistical Analysis in Poorly Drained Sloping Paddy Soil (경사지 배수불량 논에서 배수개선 효과의 지구통계적 기법을 이용한 평가)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Ki-Do;Park, Chang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. Knowledge of the spatial variability of soil water properties is of primary importance for management of agricultural lands. This study was conducted to evaluate the effect of drainage in the soil on spatial variability of soil water content using the geostatistical analysis. The soil water content was collected by a TDR (Time Domain Reflectometry) sensor after the installation of subsurface drainage on regular square grid of 80 m at 20 m paddy field located at Oesan-ri, Buk-myeon, Changwon-si in alluvial slopping paddy fields ($35^{\circ}22^{\prime}$ N, $128^{\circ}35^{\prime}$). In order to obtain the most accurate field information, the sampling grid was divided 3 m by 3 m unit mesh by four drainage types. The results showed that spatial variance of soil water content by subsurface drainage was reduced, though yield of soybean showed the same trends. Value of "sill" of soil water content with semivariogram was 9.7 in Pipe Drainage, 86.2 in Open Ditch, and 66.8 in Vinyl Barrier and 15.7 in Tube Bundle.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.