DOI QR코드

DOI QR Code

Present Status and Future Prospect of Satellite Image Uses in Water Resources Area

수자원분야의 위성영상 활용 현황과 전망

  • Kim, Seongjoon (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Lee, Yonggwan (Department of Civil, Environmental and Plant Engineering, Konkuk University)
  • 김성준 (건국대학교 사회환경플랜트공학과) ;
  • 이용관 (건국대학교 사회환경플랜트공학과)
  • Received : 2018.01.05
  • Accepted : 2018.03.08
  • Published : 2018.03.31

Abstract

Currently, satellite images act as essential and important data in water resources, environment, and ecology as well as information of geographic information system. In this paper, we will investigate basic characteristics of satellite images, especially application examples in water resources. In recent years, researches on spatial and temporal characteristics of large-scale regions utilizing the advantages of satellite imagery have been actively conducted for fundamental hydrological components such as evapotranspiration, soil moisture and natural disasters such as drought, flood, and heavy snow. Furthermore, it is possible to analyze temporal and spatial characteristics such as vegetation characteristics, plant production, net primary production, turbidity of water bodies, chlorophyll concentration, and water quality by using various image information utilizing various sensor information of satellites. Korea is planning to launch a satellite for water resources and environment in the near future, so various researches are expected to be activated on this field.

우리나라의 수자원관련 인공위성 영상정보의 활용능력은 현재 선진국대비 20~30% 수준에 머무르고 있다. 지금까지 수자원분야에서 인공위성영상의 대부분의 활용은 수문모형의 입력자료로서 토지피복도를 사용하는 수준이다. 이 또한 2000년대 건설교통부 '유역조사사업'을 통하여 미국의 Landsat 영상을 활용하여 전국적으로 1975년부터 2000년까지 5년 간격의 기본적인 토지피복도 (USGS level 1~30 m 해상도)를 작성하여 이를 보급한 것으로부터 정착되었다 (국가수자원관리종합정보시스템 http://www.wamis.go.kr/). 2000년 이후로는 환경부가 토지피복도를 제작 공급하는 부처로 구분되어, 이후의 자료로는 2008년 10 m 해상도의 토지피복도가 구축되어 있다. 한편 2000년부터 위성영상을 획득하기 시작한 Terra/Aqua MODIS 위성은 영상정보 활용의 획기적인 전환점을 만들었다고 할 수 있다. 웹상에서 제공하는 다양한 수자원/수문관련 공간정보들이 거의 실시간으로 제공되고 있는 것이다. 공간해상도 또한 250~1,000 m 수준이라 수자원분야에는 충분히 활용이 가능하며, 상세화 (Downscaling) 기술을 개발하여 정보의 수준을 끌어올리기도 한다. 정부는 2005년 8월 국가과학기술위원회에서 '미래 국가유망기술 21'을 확정하였는데, 21개 핵심분야 중에서 공공성 (국가안위 위상제고)을 고려하여 "전지구 관측 시스템과 국가자원 활용"을 선정한 바 있다. 특히 '우주와 지구', '정보와 지식', '안전', '국토관리 및 사회인프라'기술분야에서 제안된 기술들 중에는 원격탐사기술을 중심으로 구성하여, 미래의 원격탐사기술이 수자원분야에 활용될 것을 고지한 바 있다. 이에 건설교통부는 2006년 5월 '국토이노베이션기술개발사업'을 추진하면서 건설교통 R&D 혁신로드맵의 "재해예방 및 감지기술 분야"에서 홍수재해 예방시 원격탐사기술이 큰 비중을 차지하는 것으로 제안한 바있다. 한편, 2013년에는 국토교통부 국토교통과학기술진흥원에서 '위성정보를 활용한 글로벌 수자원 감시, 평가, 예측시스템 개발'을 위한 기획을 거쳐 2014년 7월 '국토관측센서 기반 광역 및 지역 수재해 감시 평가 예측기술 개발 연구단 (2014~2019)'이 발족되었다. 기술개발 내용으로는 위성정보 기반의 수문기상인자 산출기술, 미계측유역 수자원변동 분석기술, 수문학적 가뭄감시 및 전망기술, 하천건천화 추적기술 등이 포함되어, 수자원분야에서 원격탐사기술의 획기적인 발전이 기대되고 있다. 또한, 정부는 2020년대에 수자원 전용위성을 쏘아올릴 계획을 가지고 있어, 인공위성영상을 활용한 연구는 급성장할 것으로 예상된다. 현재 원격탐사 기술개발을 위한 다양한 위성영상 분석소프트웨어 (PG-STEAMER, ERDAS, ER-MAPPER, IDRISI, ArcGIS 등)들이 적정한 가격으로 개발되어 있으므로, 분석툴에 대한 물리적인 환경은 갖추어져 있다고 볼 수 있다. 지난 30여년 동안 GIS를 이용한 다양한 수자원 관련연구가 정착되어 온 것과 마찬가지로, 이제 원격탐사관련 위성영상정보의 활용연구가 활성화되어 다양한 기술개발을 통한 수자원분야의 우주기술시대를 맞이하기를 기대해 본다.

Keywords

References

  1. Aubert, D., C. Loumagne and L. Oudin. 2003. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. Journal of Hydrology 280: 145-161. https://doi.org/10.1016/S0022-1694(03)00229-4
  2. Bastiaanssen, W.G.M., E.J.M. Noordman, H. Pelgrum, G. Davids, B.P. Thoreson and R.G. Allen. 2005. SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. Journal of Irrigation and Drainage Engineering 131: 85-93. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
  3. Bastiaanssen, W.G.M. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology 229: 87-100. https://doi.org/10.1016/S0022-1694(99)00202-4
  4. Bastiaanssen, W.G.M., M. Menenti, R.A. Feddes and A.A.M. Holtslag. 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology 212-213: 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
  5. Blackmore, S. and M. Moore. 1999. Remedial Correction of Yield Map Data. Precision Agriculture 1: 53-66. https://doi.org/10.1023/A:1009969601387
  6. Bonan, G. 2008. Ecological Climatology: Concepts and Applications, Second Edition, Cambridge University Press, Cambridge USA.
  7. Brown, J.F., B.D. Wardlow, T. Tadesse, M.J. Hayes and B.C. Reed. 2008. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing 45: 16-46. https://doi.org/10.2747/1548-1603.45.1.16
  8. Ceppi, A., G. Ravazzani, C. Corbari, R. Salerno, S. Meucci and M. Mancini. 2014. Real-time drought forecasting system for irrigation management. Hydrology and Earth System Sciences 18: 3353-3366. https://doi.org/10.5194/hess-18-3353-2014
  9. Choi, M., W.P. Kustas, M.C. Anderson, R.G. Allen, F. Li and J.H. Kjaersgaard. 2009. An intercomparison of three remote sensingbased surface energy balance algorithms over a corn and soybean production region (IOWA, U.S.) during SMACEX. Agricultural and Forest Meteorology 149: 2082-2097. https://doi.org/10.1016/j.agrformet.2009.07.002
  10. Crow, W.T., D.G. Miralles and M.H. Cosh. 2010. A quasiglobal evaluation system for satellite-based surface soil moisture retrievals. IEEE Transactions on Geoscience and Remote Sensing 48: 2516-2527. https://doi.org/10.1109/TGRS.2010.2040481
  11. Draper, C.S., J.P. Walker, P.J. Steinle, R.A. de Jeu and T.R. Holmes. 2009. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sensing of Environment 113: 703-710. https://doi.org/10.1016/j.rse.2008.11.011
  12. Farrar, T.J., S.E. Nicholson and A.R. Lare. 1994. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil oisture. Remote Sensing of Environment 50: 121-133. https://doi.org/10.1016/0034-4257(94)90039-6
  13. Ha, R., H.J. Shin, M.S. Lee and S.J. Kim. 2010. Estimation of Spatial Evapotranspiration Using satellite images and SEBAL Model. Journal of the Korean Society of Civil Engineers 30: 233-242.
  14. Hall, D.K., G.A. Riggs, J.L. Foster and S.V. Kumar. 2010. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sensing of Environment 114: 496-503. https://doi.org/10.1016/j.rse.2009.10.007
  15. Holmes, T.R.H., R.A.M. De Jeu, M. Owe and A.J. Dolman. 2009. Land surface temperature from Ka band (37 GHz) passive microwave observations. Journal of Geophysical Research: Atmospheres 114: D04113.
  16. Hong, W.Y., M.J. Park, J.Y. Park, R. Ha, G.A. Park and S.J. Kim. 2009. The Correlation Analysis Between SWAT Predicted Forest Soil Moisture and MODIS NDVI During Spring Season. Journal of The Korean Society of Agricultural Engineers 51: 7-14.
  17. Hutchinson, J.M.S. and T.J. Vought. 2006. Continuous soil moisture mapping using MODIS NDVI and LST products. Papers of the Applied Geography Conferences 29: 140-149.
  18. Hwang, S., K. Kim, G. Lee and M. Lee. 2016. A Study on the Development of Automated Damage Estimation System using High Resolution Satellite Imagery. Journal of Korean Society of Hazard Mitigation 16: 161-172.
  19. Im, J.S. 2013. Applicability evaluation of SEBAL using multitemporal satellite images and observed evapotranspiration data: focused on Wangsuk river basin, Master of Philosophy, Department of Geography, Seoul National University.
  20. Jackson, T.J., M.H. Cosh, R. Bindlish, P.J. Starks, D.D. Bosch, M. Seyfried, D.C. Goodrich, M.S. Moran and J. Du. 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing 48: 4256-4272. https://doi.org/10.1109/TGRS.2010.2051035
  21. Jackson, T.J., R. Hurkmans, A. Hsu and M.H. Cosh. 2004. Soil moisture algorithm validation using data from the Advanced Microwave Scanning Radiometer (AMSR-E) in Mongolia. Italian Journal of Remote Sensing 30: 39-52.
  22. Jensen, J.R. and D.C. Cowen. 1999. Remote Sensing of Urban/Suburban Infrastructure and Socio-Economic Attributes. Photo-grammetric Engineering & Remote Sensing 65: 611-622.
  23. Jeon, T.G., H.S. Hwang and C.S. Kim. 2010. A UIS-based System Development to Express the Damage History Information of Natural Disasters. Journal of Korea Multimedia Society 13: 1739-1747.
  24. Jeong, S.T., K.C. Jang, S.K. Kang, J. Kim, H. Kondo, M. Gamo, J. Asanuma, N. Saigusa, S. Wang and S. Han. 2009. Evaluation of MODIS-derived Evapotranspiration at the Flux Tower Sites in East Asia. Korean Journal of Agricultural and Forest Meteorology 11: 174-184. https://doi.org/10.5532/KJAFM.2009.11.4.174
  25. Kang, S.M., H.J. Shin, H.J. Kwon and S.J. Kim. 2006. Extraction of Snowmelt Factors using NOAA Satellite Images and Meteorological Data. Journal of Korea Water Resources Association 39: 845-854. https://doi.org/10.3741/JKWRA.2006.39.10.845
  26. Keshavarz, M.R., M. Vazifedoust and A. Alizadeh. 2014. Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agricultural Water Management 132: 37-45. https://doi.org/10.1016/j.agwat.2013.10.004
  27. Kerr, Y.H., P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M. Escorihuela, J. Font, N. Reul, C. Gruhier, S.E. Juglea, M.R. Drinkwater, A. Hahne, M. Martin-Neira and S. Mecklenburg. 2010. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE 98: 666-687.
  28. Kim, G.S. and H.G. Park. 2010. Soil Moisture Estimation Using CART Algorithm and Ancillary Data. Journal of Korea Water Resources Association 49: 263-273.
  29. Kim, H., S. Kim, J. Jeong, I. Shin, J. Shin and M. Choi. 2016. Revising Passive Satellite-based Soil Moisture Retrievals over East Asia Using SMOS (MIRAS) and GCOM-W1 (AMSR2) Satellite and GLDAS Dataset. Journal of Wetlands Research 18: 132-147. https://doi.org/10.17663/JWR.2016.18.2.132
  30. Kim, N.W., B.J. Lee and J.E. Lee. 2006. An evaluation of snowmelt effects using SWAT in Chungju dam basin. Journal of Korean Water Resources Association 33: 833-844.
  31. Kim, S.B., H.J. Shin, J.W. Lee, Y.S. Yu and S.J. Kim. 2011. Mapping Technique for Heavy Snowfall Distribution Using Terra MODIS Images and Ground Measured Snowfall Data. Journal of the Korean Association of Geographic Information Studies 14: 33-43. https://doi.org/10.11108/kagis.2011.14.4.033
  32. Kim, S.B., H.J. Shin, R. Ha and S.J. Kim. 2012. Spatio-temporal Analysis of Snowfall for 5 Heavy Snowfall Areas in South Korea. Journal of the Korean Society of Civil Engineers 32: 103-111.
  33. Kim, S.B., S.R. Ahn, H.J. Shin and S.J. Kim. 2014. Assessment of Snowmelt Impact on Chungju Dam Watershed Inflow Using Terra MODIS Data and SWAT Model. Journal of the Korean Society of Civil Engineers 34: 457-467. https://doi.org/10.12652/Ksce.2014.34.2.0457
  34. Kocin, P.J. and L.W. Uccellini. 1990. Snowstorms along the Northeastern Coast of the United States: 1955 to 1985, Meteor. Monogr, No. 44, Amer. Meteor. Soc., 280p.
  35. Kwon, H.J., H.J. Lim and S.J. Kim. 2007. Drought assessment of agricultural district using modified SWSI. Journal of the Korean Association of Geographic Information Studies 10: 22-34.
  36. K-water. 2015. Pre-planning for technology development of satellite payload technology for water resources. Infrastructure R&D Report, Korea Agency for Infrastructure Technology Advancement, Ministry of Land, Infrastructure and Transport.
  37. Lee, H.C., B.Y. Lee, J. Kim and J.S. Shim. 2004. Tower-based Flux Measurement Using the Eddy Covariance Method at Ieodo Ocean Research Station. Ocean and Polar Research 26: 145-154. https://doi.org/10.4217/OPR.2004.26.2.145
  38. Lee, M.S., G.A. Park and S.J. Kim. 2004. Land Cover Change Detection by Typhoon RUSA. Journal of the Korean Society of Civil Engineers 24: 823-828.
  39. Lee, M.S., G.A. Park and S.J. Kim. 2005. Analysis of Hydrological Impact by Typhoon RUSA using Landsat Images and hydrological Model. Journal of Korea Water Resources Association 38: 391-399. https://doi.org/10.3741/JKWRA.2005.38.5.391
  40. Lee, M.S., G.A. Park and S.J. Kim. 2006. A Study on the Extraction of Flood Inundated Scar of Rural Small Stream Area Using RADARSAT SAR Images. Journal of Korea Water Resources Association 39: 969-976. https://doi.org/10.3741/JKWRA.2006.39.11.969
  41. Lee, S.H. and J.H. Chun. 2003. The Distribution of Snowfall by Siberian High in the Honam Region - Emphasized on the Westward Region of the Noryung Mountain ranges -. Journal of the Korean Geographical Society 38: 173-183.
  42. Lee, S.H., T.J. Ahn, B.M. Yun and M.P. Shim. 2003. A Tank model application to Soyanggang Dam and Chungju Dam with snow accumulation and snow melt. Journal of Korean Water Resources Association 36: 851-861. https://doi.org/10.3741/JKWRA.2003.36.5.851
  43. Lee, Y.G. and S.J. Kim. 2016. The Modified SEBAL for Mapping Daily Spatial Evapotranspiration of South Korea Using Three Flux Towers and Terra MODIS Data. Remote Sensing 8: 983. https://doi.org/10.3390/rs8120983
  44. Lee, Y.G., C.G. Jung, S.R. Ahn and S.J. Kim. 2016a. Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area. Journal of Korea Water Resources Association 49: 227-239. https://doi.org/10.3741/JKWRA.2016.49.3.227
  45. Lee, Y.G., C.G. Jung, J.W. Lee and S.J. Kim. 2016b. A Study on Establishment of Appropriate Observation Time for Estimation of Daily Land Surface Temperature using COMS in Korea Peninsula. Journal of the Korean Society of Agricultural Engineers 58: 37-46. https://doi.org/10.5389/KSAE.2016.58.4.037
  46. Lee, Y.G., C.G. Jung, Y.H. Cho and S.J. Kim. 2017. Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data. Journal of the Korean Society of Agricultural Engineering 59: 11-20.
  47. Lee, Y.G., S.H. Kim, S.R. Ahn, M.H. Choi, K.S. Lim and S.J. Kim. 2015. Estimation of Spatial Evapotranspiration Using Terra MODIS satellite image and SEBAL Model-For Yongdam Dam Watershed-. Journal of the Korean Association of Geographic Information Studies 18: 90-104. https://doi.org/10.11108/kagis.2015.18.1.090
  48. Li, R., A. Tsunekawa and M. Tsubo. 2014. Index-based assessment of agricultural drought in a semi-arid region of Inner Mongolia, China. Journal of Arid Land 6: 3-15. https://doi.org/10.1007/s40333-013-0193-8
  49. Li, L., P.W. Gaiser, B.C. Gao, R.M. Bevilacqua, T.J. Jackson, E.G. Njoku, C. Rudiger, J.-C. Calvet and R. Bindlish. 2010. WindSat global soil moisture retrieval and validation. IEEE Transactions on Geoscience and Remote Sensing 48: 2224-2241. https://doi.org/10.1109/TGRS.2009.2037749
  50. Narasimhan, B., R.J. Srinivasan, J.G. Arnold and M.D. Luzio. 2005. Estimation of long-term soil moisture using a distributed parameter hydrologic model and verification using remotely sensed data. American Society of Agricultural Engineers 48: 1101-1113. https://doi.org/10.13031/2013.18520
  51. Narasimhan, B. and R. Srinivasan. 2005. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology 133: 69-88. https://doi.org/10.1016/j.agrformet.2005.07.012
  52. Otkin, J.A., M.C. Anderson, C. Hain, I.E. Mladenova, J.B. Basara and M. Svoboda. 2013. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. Journal of Hydrometeorology 14: 1057-1074. https://doi.org/10.1175/JHM-D-12-0144.1
  53. Owe, M., R. de Jeu and T. Holmes. 2008. Multisensor historical climatology of satellite-derived global land surface moisture. Journal of Geophysical Research: Earth Surface 113: F01002.
  54. Parinussa, R.M., T.R.H. Holmes, M.T. Yilmaz and W.T. Crow. 2011. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations. Hydrology and Earth System Sciences 15(10): 3135-3151. https://doi.org/10.5194/hess-15-3135-2011
  55. Park, B.U. and C. Kim. 1997. A Study on Analysis of Natural Disaster Using Remote Sensing Data. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography 15: 234-244.
  56. Park, J.A. and G.S. Kim. 2011. Estimation of Spatial Distribution of Soil Moisture at Yongdam Dam Watershed Using Artificial Neural Networks. Journal of the Korean Geographical Society 46: 319-330.
  57. Park, J.Y., S.R. Ahn, S.J. Hwang, C.H. Jang, G.A. Park and S.J. Kim. 2014. Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling. Paddy Water Environment 12: s77-s88. https://doi.org/10.1007/s10333-014-0425-3
  58. Park, M.J., H.J. Shin, Y.D. Choi, J.Y. Park and S.J. Kim. 2011. Development of a hydrological drought index considering water availability. Journal of the Korean Society of Agricultural Engineers 53: 165-170. https://doi.org/10.5389/KSAE.2011.53.6.165
  59. Qiu, Y., B. Fu, J. Wang and L. Chen. 2003. Spatiotemporal prediction of soil moisture content using multiple-linear regression in a small catchment of the Loess Plateau, China. CATENA 54: 173-195. https://doi.org/10.1016/S0341-8162(03)00064-X
  60. Qin, Y., D. Yang, H. Lei, K. Xu and X. Xu. 2015. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960-2010. Journal of Hydrology 526: 55-67. https://doi.org/10.1016/j.jhydrol.2014.09.068
  61. Salomonson, V.V. and I. Appel. 2004. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment 89: 351-360. https://doi.org/10.1016/j.rse.2003.10.016
  62. Schmugge, T.J., W.P. Kustas, J.C. Ritchie, T.J. Jackson and A. Rango. 2002. Remote sensing in hydrology. Advances in Water Resources 25: 1367-1385. https://doi.org/10.1016/S0309-1708(02)00065-9
  63. Sellers, P.J., D.A. Randall, G.J. Collatz, J.A. Berry, C.B. Field, D.A. Dazlich, C. Zhang, G.D. Collelo and L. Nounoua. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMS, Part 1: Model formulation. Journal of Climate 9: 676-705. https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2
  64. Shin, H.J., G.A. Park and S.J. Kim. 2007. Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 5 River Basins in South Korea. Korean Journal of Remote Sensing 23: 119-124.
  65. Shin, H.J. and S.J. Kim. 2008. Extraction of Snowmelt Parameters using NOAA AVHRR and GIS Technique for 7 Major Dam Watersheds in South Korea. Journal of the Korean Society of Civil Engineers 28: 177-185.
  66. Shin, H.J., M.J. Park, E.H. Hwang, H.S. Chae and S.J. Kim. 2015. A Study of Spring Drought Using Terra MODIS Satellite Image - For the Soyanggang Dam Watershed -. Journal of the Korean Association of Geographic Information Studies 18: 145-157. https://doi.org/10.11108/kagis.2015.18.4.145
  67. Singh, R.K., A. Irmak, S. Irmak and D.L. Martin. 2008. Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. Journal of Irrigation and Drainage Engineering 134: 273-285. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(273)
  68. STEPI (Science and Technology Police Institute). 2011. Planning for the Utilization of Satellite Observation Information. Ministry of Education, Science and Technology, Republic of Korea.
  69. Sur, C.Y., S.J. Han, J.H. Lee and M.H. Choi. 2012. Estimation of Satellite-based Spatial Evapotranspiration and Validation of Fluxtower Measurements by Eddy Covariance Method. Korean Journal of Remote Sensing 28: 435-448. https://doi.org/10.7780/kjrs.2012.28.4.7
  70. Tang, R., Z.-L. Li, K.-S. Chen, Y. Jia, C. Li and X. Sun. 2013. Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data. Agricultural and Forest Meteorology 174-175: 28-42. https://doi.org/10.1016/j.agrformet.2013.01.008
  71. Teixeira, A., W.G.M. Bastiaanssen, M.D. Ahmad and M.G. Bos. 2009. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the lowmiddle Sao Francisco River basin, Brazil. Part A: calibration and validation. Agricultural and Forest Meteorology 149: 462-476. https://doi.org/10.1016/j.agrformet.2008.09.016
  72. Wagner, W., V. Naeimi, K. Scipal, R. de Jeu and J. Martinez-Fernandez. 2007. Soil moisture from operational meteorological satellites. Hydrogeology Journal 15: 121-131. https://doi.org/10.1007/s10040-006-0104-6
  73. Wang, H., X. Li, H. Long, X. Xu and Y. Bao. 2010. Monitoring the effects of land use and cover type changes on soil moieture using remotesensing data: A case study in China's Yongding River basin. CATENA 82: 135-145. https://doi.org/10.1016/j.catena.2010.05.008
  74. Wang, Y. 2004. Using Landsat 7 TM data acquired days after a flood event to delineate the maximum flood extent on a coastal floodplain. International Journal of Remote Sensing 25: 959-974. https://doi.org/10.1080/0143116031000150022
  75. Yoo, J.W. 2003. The Estimation of Evapotranspiration with SEBAL Model in the Geumgang Upper Basin, Korea. Master of Philosophy, Department of Geography, Seoul National University.
  76. Yoon, B.Y., J.H. Lee and Y.S. Kim. 2016. Trend on the international & domestic of solution for social issues based on satellite information. Current Industrial and Technological Trends in Aerospace, Korea Aerospace Research Institute 14: 183-190.
  77. Zribi, M., N. Baghdadi, N. Holah and O. Fafin. 2005, New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion. Remote Sensing of Environment 96: 485-496. https://doi.org/10.1016/j.rse.2005.04.005