• Title/Summary/Keyword: sensor based smart clothing

Search Result 29, Processing Time 0.023 seconds

Types and Esthetic Characteristics by Function in Portable Smart Fashion Design (휴대형 스마트 패션 디자인의 기능에 따른 유형 및 심미적 특성)

  • Si Eun Lim;Heeyoung Ju
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • The smart fashion industry is showing steady growth worldwide, which will create new value throughout the fashion industry and become an essential element for efficient lifestyles. This study attempted to examine the development trend of smart fashion products from a design perspective and present the direction of design as a fashion item incorporating smart technology from a functional perspective. For this purpose, the category of portable smart fashion and the characteristics of the research object were considered through current status survey and previous research review. Among smart fashion, accessories and clothing/fabric products that have been released thus far that apply portable fashion design principles are selected and its characteristics are analyzed. In addition, function keywords were extracted based on the product description provided by the manufacturer and the function-oriented types were classified to identify each type's design characteristics. Therefore, the area receiving the signal and the sensor size should be considered, as should the fashion accessory type that combines various materials and colors. The clothing/textile type requires a design that mainly focuses on functions related to bio-signal interactions.

Multi-access Monitoring System for Biological Signal Collection (생체신호수집을 위한 다중접속 모니터링 시스템)

  • Kim, Tae-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.145-148
    • /
    • 2020
  • Wearable computing is growing rapidly as research on body area communication network using wireless sensor network technology is actively conducted. In particular, there is an increasing interest in smart clothing measuring unrestrained and insensitive bio signals, and research is being actively conducted. However, research on smart clothing is mainly based on 1: 1 wireless communication. In this paper, we propose a multi-access monitoring system that can measure bio-signals by multiple users wearing smart clothing. The proposed system consists of wireless access device, multiple access control server and monitoring system. It also provides a service that allows multiple users to monitor and measure bio signals at the same time.

A Study on the Textile Sensor Applied to Smart Wear for Monitoring Meditation Breathing (명상호흡 모니터링용 스마트의류를 위한 호흡수 측정 직물센서 연구)

  • Hwang, Su Jung;Jung, Yoon Won;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.1
    • /
    • pp.83-90
    • /
    • 2018
  • The purpose of this study is for fundamental research of meditation smart wear for physical and mental healing, and researching method for monitoring phase of meditation through textile by measuring the number of abdominal respiration when meditating. For this purpose, the research implemented Single Wall Carbon Nano-Tube (SWCNT) based strain gauges type textile sensor, considered reliability and validity of respiratory sensing, and analyzed efficiency of respiratory sensing based on body parts comparatively. The first preliminary experiment was to evaluate the performance of textile sensor through abdominal model dummy which open and shut of 5 cm repeatedly for 2 minutes at the rate of 0.1Hz in order to simulate abdominal respiration. It concluded signal efficiency between reference sensor(BIOPAC) and textile respiratory sensor appears statistically significant (p<0.001). The second experiment were conducted with 4 subjects doing abdominal respiration under same conditions, and after comparing the signal values between two sensors from 4 attached locations(around center and sides of omphali and phren), center of omphali and sides of phren were selected as suitable location for measuring meditational breathing as they showed large and stable signals. In result, this research aimed for implementing of the textile sensor for sensing meditational breathing of long respiration cycle, review of reliability and validity for sensing number of meditational respiration with the sensor and consideration of sensing efficiency by sensing location on body parts.

A Study of the Basic Design for Smart Clothing based on Measurement of the Respiration (호흡 측정 기능의 스마트 의류를 위한 기초 디자인 연구)

  • Cho, Ha Kyung;Min, Se Dong
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.415-424
    • /
    • 2012
  • According to introduction of Well-Being lifestyle and ageing society, vital sign monitoring system which can be continued measurement of vital sign has been increased their important in field of the healthcare. Under this trend, Respiration monitoring system has been studied and developed in a various way to apply continued monitoring and non-conscious monitoring system. But, Study of the respiration monitoring system based on consumer needs and usability test is insufficient. In this study, Textile capacitive pressure sensor(TCPS) of belt type was developed and tested it's utility and subjective sensibility. TCPS measures respiration signals and can be derived in real time monitoring. As a result, monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rate (correlation (r=0.9553, p<0.0001). In the result of usability and wearability test, all of categorizes(perceived change, wearability, movement, facility of management, usefulness) were received favorable evaluation on usability test( mean value : 3.8), and suitable location of TCPS in the clothing is deriven on the abdomen part. According to synthetical results, Basic smart clothing design based on respiration monitoring system is proposed.

  • PDF

Application and Functionalization of Graphene Oxide on Cotton Fabric Via Aerosol Spray Pyrolysis (그래핀 옥사이드의 에어로졸 분무열분해 공정을 통한 면직물의 전기전도성 및 물성 평가)

  • Ohm, Hyunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.24 no.1
    • /
    • pp.138-145
    • /
    • 2022
  • Today, graphene loaded textiles are being considered promising smart clothing due to their high conductivity. In this study, we reported reduced graphene oxide(r-GO) deposited pure cotton fabrics fabricated with a colloidal solution of graphene(GO), using a one-step aerosol spray pyrolysis(ASP) process and their potential application on smart textiles. The ASP process is advantageous in that it is easily implementable and can be applied for continuous processing. Moreover, this process has never been applied to deposit r-GO on pure cotton fabric. The field emission-scanning microscopy (FE-SEM) observation, Fourier transform-infrared(FT-IR) analysis, Raman spectroscopy, X-ray diffraction(XRD) analysis, and ultraviolet transmittance(UVT) were used to evaluate material properties of the r-GO colloids. The resistance was also measured to evaluate the electrical conductivity of the specimens. The results revealed that the r-GO was successfully deposed on specimens, and the specimen with the highest electrical conductivity demonstrated an electrical resistance value of 2.27 kΩ/sq. Taken together, the results revealed that the ASP method demonstrated a high potential for effective deposition of r-GO on cotton fabric specimens and is a prospect for the development of conductive cotton-based smart clothing. Therefore, this study is also meaningful in that the ASP process can be newly applied by depositing r-GO on the pure cotton fabric.

Fabrication of Electroconductive Textiles Based PLA Nanofiber Web Coated with PEDOT:PSS (PEDOT:PSS로 코팅된 PLA 나노섬유 웹의 전기전도성 텍스타일 제조)

  • Shin, Sungeun;Cha, Sujin;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.22 no.2
    • /
    • pp.233-239
    • /
    • 2020
  • We proposed a simple process of fabricating electroconductive textiles by coating conductive polymer PEDOT:PSS (Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) on biocompatible PLA (Poly Lactic Acid) nanofiber web for application to smart healthcare. Electroconductive textiles were obtained by a drop-coating process using different amounts of PEDOT:PSS solutions., DMSO (dimethyl sulfoxide) was then used as an additive in the post-treatment process to improve conductivity. The surface morphology of the specimens was observed by FE-SEM. The chemical structures of the specimens were characterized using FTIR. The electrical properties (linear and sheet resistance) of the specimens were measured. The effect of the bending angles on the electrical properties was also investigated to confirm their applicability as wearable smart textiles. FE-SEM and FTIR analysis confirmed that the deposition of PEDOT:PSS on the PLA nanofiber web surface was successful. The conductivity of the PEDOT:PSS/PLA nanofiber web was enhanced up to 1.5 ml with an increasing amount of PEDOT:PSS solutions, but there was no significant difference at 2.0 ml. The optimum condition of PEDOT:PSS deposition was established to 1.5 ml. Even when the specimen coated with 1.5 ml was bent every 30°, the change in the electrical resistance values was still low within 3.7 Ω. It confirmed that stable electrical performance was maintained and proved the applicability as a flexible textile sensor.

Analysis of User Experience for the Development of Smart Golf-wear (스마트 골프웨어 개발을 위한 사용자경험 분석)

  • Sin, Sunmi;Do, Wolhee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2021
  • This study investigates and analyzes user preferences for golf wear with a sense of wear and smart function for the development of smart golf wear based on user convenience. A survey was conducted on 124 males in the age range of 40-60s that consisted of professional golfers, amateur golfers and the public with golf experience (such as major golf consumers) from August 1 to August 30, 2019 (IRB NO. 1040198-190617-HR-057-03); consequently, a 117 copies were accepted for analysis. The findings are as follows. The elbow (4.3%) of golf wear is unsatisfactory. The important part of the golf swing motion is the shoulder (39.3)>, elbow (30.8%)>, and wrist (6.8%). In addition, the unsatisfactory wearing of golf wear due to golf swing movements indicated that the shoulder or elbow area was pulled or the bottom of the top was raised during the back swing movements. The survey results on the expected discomfort when wearing smart wear are 'discomfort of obstruction when wearing' (53.8%), 'discomfort of washing' (17.1%), and 'weight of attached machine' (13.7%). Opinions such as 'Will not feel good when the sensor is attached' were investigated. The examination of the preference for golf wear equipped with smart functions indicated that a posture correction function to correct the golf swing posture is the most desired quality that is also considered important when correcting posture.

Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring (산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색)

  • Hyukjoo Yang;Seungsin Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.3
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

Design and Implementation of a Sensor Technology-based Safety Shoe Recognition System to Prevent Safety Accidents (안전사고 예방을 위한 센서 기술 기반 안전화 인식 시스템 설계 및 구현)

  • Kyoung-Jin Oh;Jeong-Min Park;Kwang-Jin, Kwak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.163-170
    • /
    • 2023
  • With the introduction of the law regarding severe penalties for major accidents, employers, management executives, and corporations have significantly increased the number of safety managers and invested extensively in acquiring ISO certifications to prevent accidents in industrial sites. Moreover, the implementation of the Smart Safety Management System (SSMS) has facilitated the management of personnel and safety equipment. While IoT-based management systems have been applied to safety gear such as helmets, safety harnesses, and protective clothing, the responsibility for safety shoes still primarily lies with on-site managers and individuals, leaving a vulnerability to accidents. In this study, we aim to implement a Raspberry Pi-based sensor device to proactively detect workers' safety shoe usage upon entering the site. The goal is to confirm the usage of safety shoes and prevent accidents that may occur due to non-compliance with safety shoes regulations.

Performance Evaluation of Fabric Sensors for Movement-monitoring Smart Clothing: Based on the Experiment on a Dummy (동작 모니터링 스마트 의류를 위한 직물 센서의 성능 평가: 더미 실험을 중심으로)

  • Cho, Hyun-Seung;Park, Sun-Hyeong;Kang, Da-Hye;Lee, Kang-Hwi;Kang, Seung-Jin;Han, Bo-Ram;Oh, Jung-Hoon;Lee, Hae-Dong;Lee, Joo-Hyeon;Lee, Jeong-Whan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.25-34
    • /
    • 2015
  • TThis study explored the requirement of fabric sensor that can measure the motion of the joint effectively by measuring and analyzing the variation in electric resistance of a sensor in accordance with bending and stretching motion of the arm by the implementation of a motion sensor utilizing conductive fabric. For this purpose, on both sides of two kinds of knitted fabric, namely 'L' fabric and 'W' fabric Single Wall Carbon Nano-Tube(SWCNT) was coated, fabric sensor was developed by finishing them in a variety of ways, and the sensor was attached to the arm band. The fabric sensor consisted of total 48 cases, namely background fabric for coating, the method of sensor attachment, the number of layer of sensors, the length of sensor, and the width of sensor. The performance of fabric motion sensors in terms of a dummy arm, that is, a Con-Trex MJ with 48 arm bands around it was evaluated. For each arm band, a total of 48, fastened around the dummy arm, it was adjusted to repeat the bending and stretching at the frequency : 0.5Hz, ROM : $20^{\circ}{\sim}120^{\circ}$, the voltage was recorded for each case after conducting three sets of repeat measurement for a total of 48 cases. As a result of the experiment, and as a consequences of the evaluation and analysis of the voltage based on the uniformity of the base line of the peak-to-peak voltage(Vp-p), the uniformity of Vp-p within the same set, and the uniformity of the Vp-p among three sets, the fabric sensors that have been configured in SWCNT coated 'L' fabric / welding / two layers / $50{\times}5mm$, $50{\times}10mm$, $100{\times}10mm$, and SWCNT coated 'W' fabric / welding / two layers / $50{\times}10mm$ exhibited the most uniform and stable signal value within 5% of the total variation rate. Through all these results of the experiment, it was confirmed that SWCNT coated fabric was suitable for a sensor that can measure the human limb operation when it was implemented as a fabric sensor in a variety of forms, and the optimal sensor types were identified.