Browse > Article
http://dx.doi.org/10.5805/SFTI.2020.22.2.233

Fabrication of Electroconductive Textiles Based PLA Nanofiber Web Coated with PEDOT:PSS  

Shin, Sungeun (Dept. of Clothing & Textiles, Yonsei University)
Cha, Sujin (Dept. of Clothing & Textiles, Yonsei University)
Cho, Gilsoo (Dept. of Clothing & Textiles, Yonsei University)
Publication Information
Fashion & Textile Research Journal / v.22, no.2, 2020 , pp. 233-239 More about this Journal
Abstract
We proposed a simple process of fabricating electroconductive textiles by coating conductive polymer PEDOT:PSS (Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)) on biocompatible PLA (Poly Lactic Acid) nanofiber web for application to smart healthcare. Electroconductive textiles were obtained by a drop-coating process using different amounts of PEDOT:PSS solutions., DMSO (dimethyl sulfoxide) was then used as an additive in the post-treatment process to improve conductivity. The surface morphology of the specimens was observed by FE-SEM. The chemical structures of the specimens were characterized using FTIR. The electrical properties (linear and sheet resistance) of the specimens were measured. The effect of the bending angles on the electrical properties was also investigated to confirm their applicability as wearable smart textiles. FE-SEM and FTIR analysis confirmed that the deposition of PEDOT:PSS on the PLA nanofiber web surface was successful. The conductivity of the PEDOT:PSS/PLA nanofiber web was enhanced up to 1.5 ml with an increasing amount of PEDOT:PSS solutions, but there was no significant difference at 2.0 ml. The optimum condition of PEDOT:PSS deposition was established to 1.5 ml. Even when the specimen coated with 1.5 ml was bent every 30°, the change in the electrical resistance values was still low within 3.7 Ω. It confirmed that stable electrical performance was maintained and proved the applicability as a flexible textile sensor.
Keywords
smart textile; electroconductive textiles; PEDOT:PSS, PLA nanofiber web; smart healthcare;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Akerfeldt, M., Straat, M., & Walkenstrom, P. (2013). Electrically conductive textile coating with a PEDOT-PSS dispersion and a polyurethane binder. Textile Research Journal, 83(6), 618-627. doi:10.1177/0040517512444330   DOI
2 Avinc, O., & Khoddami, A. (2009). Overview of poly(lactic acid) (PLA) fibre. Fibre Chemistry, 41(6), 391-401.   DOI
3 Gotovtsev, P. M., Badranova, G. U., Zubavichus, Y. V., Chumakov, N. K., Antipova, C. G., Kamyshinsky, R. A., Presniakov, M. Y., Tokaev, K. V., & Grigoriev, T. E. (2019). Electroconductive PEDOT: PSS-based hydrogel prepared by freezing-thawing method. Heliyon, 5(9), e02498. doi:10.1016/j.heliyon.2019.e02498   DOI
4 Jang, E. J., Cho, H. S., & Cho, G. S. (2019a). Enhancing the conductivity of PEDOT:PSS/PU nanoweb via dimethyl sulfoxide solvent treatment. Proceedings of the Fiber Society, Spring Conference, Hong Kong, China, pp. 21-23.
5 Jang, E. J., Liu, H., & Cho, G. S. (2019b). Characterization and exploration of polyurethane nanofiber webs coated with graphene as a strain gauge. Textile Research Journal, 89(23-24), 4980-2991. doi:10.1177/0040517519844604   DOI
6 Jang, Y. S., Yang, S. M., Lee, H. J., Yang, J. C., Kim S. M., Chung, S. C., & Lee, J. Y. (2015). Electrically conducting polymer-Based biomaterials and their biomedical applications and development direction. Polymer Science and Technology, 26(4), 305-312.
7 Joo, M. I., Ko, D. H., & Kim, H. C. (2016). Development of smart healthcare wear system for acquiring vital signs and monitoring personal heal. Journal of Korea Multimedia Society, 19(5), 808-817. doi:10.9717/kmms.2016.19.5.808   DOI
8 Calvert, P., Duggal, D., Patra, P., Agrawal, A., & Sawhney, A. (2008). Conducting polymer and conducting composite strain sensors on textiles. Molecular Crystals and Liquid Crystals, 484(1), 291-657. doi:10.1080/15421400801904690   DOI
9 Kim, I. H., & Cho, G. S. (2018). Polyurethane nanofiber strain sensors via in situ polymerization of polypyrrole and application to monitoring joint flexion. Smart Materials and Structures, 27(7), 075006. doi:10.1088/1361-665X/aac0b2   DOI
10 Kim, J. H., Seo, Y. K., Han, J. W., Oh, J. Y., & Kim, Y. H. (2015). Effect of solvent doping and post-treatment on the characteristics of PEDOT:PSS conducting polymer. Applied Chemistry for Engineering, 26(3), 275-279. doi:10.14478/ace.2015.1018   DOI
11 Kim, J. H., Yang, H. J., & Cho, G. S. (2019). Production of polypyrrole coated PVA nanoweb electroconductive textiles for application to ECG electrode. Fashion & Textile Research Journal, 21(3), 363-369. doi:10.5805/SFTI.2019.21.3.363   DOI
12 Na, S. I., Yeo, J. S., Yun, J. M., Kim, J. G., & Kim, D. Y. (2010). Polymer PEDOT:PSS-based transparent electrode material technology. The Korean Information Display Society, 11(5), 57-63.   DOI
13 Olivares, A. J., Cosme, I., Sanchez-Vergara, M. E., Mansurova, S., Carrillo, J. C., Martinez, H. E., & Itzmoyotl, A. (2019). Nanostructural modification of PEDOT:PSS for high charge carrier collection in hybrid frontal interface of solar cells. Polymers, 11(6), 1034. doi:10.3390/polym11061034   DOI
14 Pani, D., Dessi, A., Saenz-Cogollo, J. F., Barabino, G., Fraboni, B., & Bonfiglio, A. (2015). Fully textile, PEDOT:PSS based electrodes for wearable ECG monitoring systems. IEEE Transactions on Biomedical Engineering, 63(3), 540-549. doi:10.1109/TBME.2015.2465936   DOI
15 Ryan, J. D., Mengistie, D. A., Gabrielsson, R., Lund, A., & Mu?ller, C. (2017). Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Applied Materials & Interfaces, 9(10), 9045-9050. doi:10.1021/acsami.7b00530   DOI
16 Park, J. Y., Lee, I. W., Kim, M. J., & Hwang, C. H. (2011). Preparation, properties and applications of electrospun polylactic acid (PLA) fibers containing silver. Journal of Advanced Engineering and Technology, 4(4), 491-495.
17 Praharaj Bhatnagar, M., Kelkar, S., & Mahanwar, P. (2017). Synthesis and characterization of poly (3, 4 ethylenedioxythiophene)/poly (lactic acid) nanofibres by electrospinning. Polymer International, 66(3), 359-365. doi:10.1002/pi.5267   DOI
18 Rho, J. S. (2016). Wearable textile strain sensors. Fashion & Textile Research Journal, 18(6), 733-745. doi:10.5805/SFTI.2016.18.6. 733   DOI
19 Tadesse, M. G., Mengistie, D. A., Chen, Y., Wang, L., Loghin, C., & Nierstrasz, V. (2019). Electrically conductive highly elastic polyamide/lycra fabric treated with PEDOT:PSS and polyurethane. Journal of Materials Science, 54(13), 9591-9602. doi:10.1007/s10853-019-03519-3   DOI
20 Wisitsoraat, A., Pakapongpan, S., Sriprachuabwong, C., Phokharatkul, D., Sritongkham, P., Lomas, T., & Tuantranont, A. (2013). Graphene-PEDOT:PSS on screen printed carbon electrode for enzymatic biosensing. Journal of Electroanalytical Chemistry, 704, 208-213. doi:10.1016/j.jelechem.2013.07.012   DOI
21 Yang, S. L., Wu, Z. H., Yang, W., & Yang, M. B. (2008). Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 27(8), 957-963. doi:10.1016/j.polymertesting.2008.08.009   DOI