DOI QR코드

DOI QR Code

Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring

산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색

  • Hyukjoo Yang (Dept. of Clothing & Textiles, Yonsei University) ;
  • Seungsin Lee (Dept. of Clothing & Textiles, Yonsei University)
  • 양혁주 (연세대학교 의류환경학과) ;
  • 이승신 (연세대학교 의류환경학과)
  • Received : 2023.03.29
  • Accepted : 2023.05.09
  • Published : 2023.06.30

Abstract

In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-20 22R1A6A3A13056950). 이 논문은 2021학년도 연세대학교 대학원혁신지원사업 대학원생 아이디어 인큐베이팅 지원 사업의 지원을 받아 수행되었음.

References

  1. Ahn, Y., Lim, J. Y., Hong, S. M., Lee, J., Ha, J., Choi, H. J., & Seo, Y. (2013). Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly (vinylidene fluoride). The Journal of Physical Chemistry C, 117(22), 11791-11799. https://doi.org/10.1021/jp4011026
  2. Bairagi, S., & Ali, S. W. (2020). Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. Soft Matter, 16(20), 4876-4886. https://doi.org/10.1039/D0SM00438C
  3. Bayan, S., Bhattacharya, D., Mitra, R. K., & Ray, S. K. (2020). Self-powered flexible photodetectors based on Ag nanoparticle-loaded g-C3N4 nanosheets and PVDF hybrids: Role of plasmonic and piezoelectric effects. Nanotechnology, 31(36), 365401. https://doi.org/10.1088/1361-6528/ab9470
  4. Chang, C., Tran, V. H., Wang, J., Fuh, Y.-K., & Lin, L. (2010). Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Letters, 10(2), 726-731. https://doi.org/10.1021/nl9040719
  5. Chen, H., Li, M., Wen, X., Yang, Y., He, D., Choy, W. C. H., & Lu, H. (2019). Enhanced silver nanowire composite window electrode protected by large size graphene oxide sheets for perovskite solar cells. Nanomaterials, 9(2), 193. https://doi.org/10.3390/nano9020193
  6. Cho, H.-S., Park, S.-H., Kang, D.-H., Lee, K.-H., Kang, S.-J., Han, B.-R., Oh, J.-H., Lee, H.-D., Lee, J.-H., & Lee, J.-W. (2015). Performance evaluation of fabric sensors for movement-monitoring smart clothing: Based on the experiment on a dummy. Korean Journal of the Science of Emotion & Sensibility, 18(4), 25-34. http://journal.koses.or.kr/past/view_kiss.asp?a_key=3389796#
  7. De, S., Higgins, T. M., Lyons, P. E., Doherty, E. M., Nirmalraj, P. N., Blau, W. J., Boland, J. J., & Coleman, J. N. (2009). Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano, 3(7), 1767-1774. https://doi.org/10.1021/nn900348c
  8. Dudem, B., Kim, D. H., Bharat, L. K., & Yu, J. S. (2018). Highlyflexible piezoelectric nanogenerators with silver nanowires and barium titanate embedded composite films for mechanical energy harvesting. Applied Energy, 230, 865-874. https://doi.org/10.1016/j.apenergy.2018.09.009
  9. Guo, Q., Li, F., Xia, F., Gao, X., Wang, P., Hao, H., Sun, H., Liu, H., & Zhang, S. (2019). High-performance Sm-doped Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3-based piezoceramics. ACS Applied Materials & Interfaces, 11(46), 43359-43367. https://doi.org/10.1021/acsami.9b15424
  10. Guo, Y., Zhang, X.-S., Wang, Y., Gong, W., Zhang, Q., Wang, H., & Brugger, J. (2018). All-fiber hybrid piezoelectricenhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy, 48, 152-160. https://doi.org/10.1016/j.nanoen.2018.03.033
  11. Han, H., Nakagawa, Y., Takai, Y., Kikuchi, K., Tsuchitani, S., & Kosimoto, Y. (2012). Microstructure fabrication on a β-phase PVDF film by wet and dry etching technology. Journal of Micromechanics and Microengineering, 22(8), 085030. https://doi.org/10.1088/0960-1317/22/8/085030
  12. Han, J., Kim, J. H., Choi, H. J., Kim, S. W., Sung, S. M., Kim, M. S., Choi, B. K., Paik, J. H., Lee, J. S., & Cho, Y. S. (2021). Origin of enhanced piezoelectric energy harvesting in all-polymer-based core-shell nanofibers with controlled shell-thickness. Composites Part B: Engineering, 223, Article 109141. https://doi.org/10.1016/j.compositesb.2021.109141
  13. He, Y., Wang, H., Sha, Z., Boyer, C., Wang, C. H., & Zhang, J. (2022). Enhancing output performance of PVDF-HFP fiber-based nanogenerator by hybridizing silver nanowires and perovskite oxide nanocrystals. Nano Energy, 98, Article 107343. https://doi.org/10.1016/j.nanoen.2022.107343
  14. Hu, L., Kim, H. S., Lee, J. Y., Peumans, P., & Cui, Y. (2010). Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano, 4(5), 2955-2963. https://doi.org/10.1021/nn1005232
  15. Huan, Y., Zhang, X., Song, J., Zhao, Y., Wei, T., Zhang, G., & Wang, X. (2018). High-performance piezoelectric composite nanogenerator based on Ag/(K, Na) NbO3 heterostructure. Nano Energy, 50, 62-69. https://doi.org/10.1016/j.nanoen.2018.05.012
  16. Jang, E., & Cho, G. (2019). The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fashion & Textile Research Journal, 21(6), 697-707. https://doi.org/10.5805/SFTI.2019.21.6.697
  17. Jeong, C. K., Lee, J., Han, S., Ryu, J., Hwang, G.-T., Park, D. Y., Park, J. H., Lee, S. S., Byun, M., Ko, S. H., & Lee, K. J. (2015). A hyper stretchable elastic-composite energy harvester. Advanced Materials, 27(18), 2866-2875. https://doi.org/10.1002/adma.201500367
  18. Kim, S. R., Yoo, J. H., Cho, Y., & Park, J. W. (2019). Flexible piezoelectric energy generators based on P(VDF-TrFE) nanofibers. Materials Research Express, 6(8), Article 086311. https://doi.org/10.1088/2053-1591/ab1ee8
  19. Lee, H., Cho, H., Lee, E., Jang, E., & Cho, G. (2019). Fabrication of strain sensor based on graphene/polyurethane nanoweb and respiration measurement. Korean Journal of the Science of Emotion & Sensibility, 22(1), 15-22. https://doi.org/10.14695/KJSOS.2018.22.1.15
  20. Lee, J., Lee, I., Kim, T.-S., & Lee, J.-Y. (2013). Efficient welding of silver nanowire networks without post processing. Small, 9(17), 2887-2894. https://doi.org/10.1002/smll.201203142
  21. Li, B., Xu, C., Zheng, J., & Xu, C. (2014). Sensitivity of pressure sensors enhanced by doping silver nanowires. Sensors, 14(6), 9889-9899. https://doi.org/10.3390/s140609889
  22. Li, B., Zheng, J., & Xu, C. (2013, July 10-12). Silver nanowire dopant enhancing piezoelectricity of electrospun PVDF nanofiber web [Paper presentation]. Fourth International Conference on Smart Materials and Nanotechnology in Engineering, Gold Coast, Australia.
  23. Li, J., Chen, S., Liu, W., Fu, R., Tu, S., Zhao, Y., Dong, L., Yan, B., & Gu, Y. (2019). High performance piezoelectric nanogenerators based on electrospun ZnO nanorods/poly(vinylidene fluoride) composite membranes. The Journal of Physical Chemistry C, 123(18), 11378-11387. https://doi.org/10.1021/acs.jpcc.8b12410
  24. Luchaninov, A. G., Shil'Nikov, A. V., Shuvalov, L. A., & Malyshev, V. A. (1993). The effect of mechanical stress on the properties of electrically depolarized piezoelectric ceramics. Ferroelectrics, 145(1), 235-239. https://doi.org/10.1080/00150199308222451
  25. Min, S.-D., Yun, Y.-H., Lee, H.-S., Shin, H.-S., Cho, H.-K., Hwang, S.-C., & Lee, M.-H. (2010). Respiration measurement system using textile capacitive pressure sensor. The Transactions of the Korean Institute of Electrical Engineers P, 59(1), 58-63. https://doi.org/10.5370/KIEEP.2010.59.1.058
  26. Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., & Tanioka, A. (2006). Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science Part B: Polymer Physics, 44(5), 779-786. https://doi.org/10.1002/polb.20737
  27. Pandey, R. K., Dutta, J., Brahma, S., Rao, B., & Liu, C.-P. (2021). Review on ZnO-based piezotronics and piezoelectric nanogenerators: Aspects of piezopotential and screening effect. Journal of Physics: Materials, 4(4), 044011. https://doi.org/10.1088/2515-7639/ac130a
  28. Parangusan, H., Ponnamma, D., & Al-Maadeed, M. A. A. (2018). Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Scientific Reports, 8(1), 754. https://doi.org/10.1038/s41598-017-19082-3
  29. Park, S.-H., Cho, H.-S., Yang, J.-H., Yoon, D.-Y., Yoon, G.-S., & Lee, J.-H. (2013). An exploration on the piezoelectric energy harvesting clothes based on the motion analysis of the extremities. Korean Journal of the Science of Emotion & Sensibility, 16(1), 85-94.
  30. Qi, X., Sun, E., Zhang, R., Yang, B., Li, S., & Cao, W. (2017). Effect of Mn-doping on dielectric relaxation behavior of Pb (In1/2Nb1/2) O3-Pb (Mg1/3Nb2/3) O3-PbTiO3 ferroelectric ceramics. Ceramics International, 43(18), 16819-16826. https://doi.org/10.1016/j.ceramint.2017.09.079
  31. Ramadan, K. S., Sameoto, D., & Evoy, S. (2014). A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Materials and Structures, 23(3), 033001. https://doi.org/10.1088/0964-1726/23/3/033001
  32. Ramasundaram, S., Yoon, S., Kim, K. J., & Park, C. (2008). Preferential formation of electroactive crystalline phases in poly(vinylidene fluoride)/organically modified silicate nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 46(20), 2173-2187. https://doi.org/10.1002/polb.21550
  33. Renxin, X., Wen, C., Jing, Z., Yueming, L., & Huajun, S. (2006). Dielectric and piezoelectric properties of 0-3 PZT/PVDF composite doped with polyaniline. Journal of Wuhan University of Technology-Materials Science Edition, 21(1), 84-87. https://doi.org/10.1007/BF02861478
  34. Roh, J.-S. (2016). Wearable textile strain sensors. Fashion & Textile Research Journal, 18(6), 733-745. https://doi.org/10.5805/SFTI.2016.18.6.733
  35. Sa-Gong, G., Safari, A., Jang, S. J., & Newnham, R. E. (1986). Poling flexible piezoelectric composites. Ferroelectrics Letters Section, 5(5), 131-142. https://doi.org/10.1080/07315178608202472
  36. Sakamoto, W. K., Marin-Franch, P., & Das-Gupta, D. K. (2002). Characterization and application of PZT/PU and graphite doped PZT/PU composite. Sensors and Actuators A: Physical, 100(2-3), 165-174. https://doi.org/10.1016/S0924-4247(02)00042-0
  37. Shin, S., Cha, S., & Cho, G. (2020). Fabrication of electroconductive textile based PLA nanofiber web coated with PEDOT:PSS. Fashion & Textile Research Journal, 22(2), 233-239. https://doi.org/10.5805/SFTI.2020.22.2.233
  38. Siddiqui, S., Kim, D., Duy, L. T., Nguyen, M. T., Muhammad, S., Yoon, W., & Lee, N. (2015). High performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy, 15, 177-185. https://doi.org/10.1016/j.nanoen.2015.04.030
  39. Song, Y., Lee, E., & Lee, S. (2017). Water absorption properties and biodegradability of lignin/PVA nanofibrous webs. Journal of the Korean Society of Clothing and Textiles, 41(3), 517-526. https://doi.org/10.5850/JKSCT.2017.41.3.517
  40. Sun, B., Li, X., Zhao, R., Ji, H., Qiu, J., Zhang, N., He, D., & Wang, C. (2019). Electrospun poly(vinylidene fluoride)- zinc oxide hierarchical composite fiber membrane as piezoelectric acoustoelectric nanogenerator. Journal of Materials Science, 54(3), 2754-2762. https://doi.org/10.1007/s10853-018-2985-x
  41. Thakur, P., Kool, A., Hoque, N. A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., & Das, S. (2018). Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy, 44, 456-467. https://doi.org/10.1016/j.nanoen.2017.11.065
  42. Tien, N. T., Trung, T. Q., Seoul, Y. G., Kim, D. I., & Lee, N.-E. (2011). Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics. ACS Nano, 5(9), 7069-7076. https://doi.org/10.1021/nn2017827
  43. Wang, F., Sun, H., Guo, H., Sui, H., Wu, Q., Liu, X., & Huang, D. (2021). High performance piezoelectric nanogenerator with silver nanowires embedded in polymer matrix for mechanical energy harvesting. Ceramics International, 47 (24), 35096-35104. https://doi.org/10.1016/j.ceramint.2021.09.052
  44. Wang, X., Song, J., Liu, J., & Wang, Z. L. (2007). Direct-current nanogenerator driven by ultrasonic waves. Science, 316(5821), 102-105. https://doi.org/10.1126/science.1139366
  45. Wang, Z. L. (2007). Nanopiezotronics. Advanced Materials, 19(6), 889-892. https://doi.org/10.1002/adma.200602918
  46. Wang, Z. L., & Song, J. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771), 242-246. https://doi.org/10.1126/science.1124005
  47. Wu, Y., Hsu, S. L., Honeker, C., Bravet, D. J., & Williams, D. S. (2012). The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). The Journal of Physical Chemistry B, 116(24), 7379-7388. https://doi.org//10.1021/jp3043494
  48. Xiong, W., Liu, H., Chen, Y., Zheng, M., Zhao, Y., Kong, X., Wang, Y., Zhang, X., Kong, X., Wang., P., & Jiang, L. (2016). Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Advanced Materials, 28(33), 7167-7172. https://doi.org/10.1002/adma.201600358
  49. Yang, H., Kim, J., Lee, S., & Cho, G. (2020). Fabrication of polypyrrole deposited poly(vinyl alcohol) nanofiber webs by dip-coating and In situ polymerization and their application to textile electrode sensors. Fashion & Textile Research Journal, 22(3), 386-398. https://doi.org/10.5805/SFTI.2020.22.3.386
  50. Yu, L., & Cebe, P. (2009). Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Polymer, 50(9), 2133-2141. https://doi.org/10.1016/j.polymer.2009.03.003
  51. Zhang, L., Wang, Y., Gui, J., Wang, X., Li, R., Liu, W., Sun, C., Zhao, X., & Guo, S. (2019). Efficient welding of silver nanowires embedded in a poly(vinylidene fluoride) film for robust wearable electronics. Advanced Materials Technologies, 4(2), Article 1800438. https://doi.org/10.1002/admt.201800438