• Title/Summary/Keyword: sensitivity element

Search Result 1,003, Processing Time 0.026 seconds

Shape Design Optimization using Isogeometric Analysis Method (등기하 해석법을 이용한 형상 최적 설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.216-221
    • /
    • 2008
  • Shape design optimization for linear elasticity problem is performed using isogeometric analysis method. In many design optimization problems for real engineering models, initial raw data usually comes from CAD modeler. Then designer should convert this CAD data into finite element mesh data because conventional design optimization tools are generally based on finite element analysis. During this conversion there is some numerical error due to a geometry approximation, which causes accuracy problems in not only response analysis but also design sensitivity analysis. As a remedy of this phenomenon, the isogeometric analysis method is one of the promising approaches of shape design optimization. The main idea of isogeometric analysis is that the basis functions used in analysis is exactly same as ones which represent the geometry, and this geometrically exact model can be used shape sensitivity analysis and design optimization as well. In shape design sensitivity point of view, precise shape sensitivity is very essential for gradient-based optimization. In conventional finite element based optimization, higher order information such as normal vector and curvature term is inaccurate or even missing due to the use of linear interpolation functions. On the other hands, B-spline basis functions have sufficient continuity and their derivatives are smooth enough. Therefore normal vector and curvature terms can be exactly evaluated, which eventually yields precise optimal shapes. In this article, isogeometric analysis method is utilized for the shape design optimization. By virtue of B-spline basis function, an exact geometry can be handled without finite element meshes. Moreover, initial CAD data are used throughout the optimization process, including response analysis, shape sensitivity analysis, design parameterization and shape optimization, without subsequent communication with CAD description.

  • PDF

Design Sensitivity Analysis for the Sheet Metal Forming Process with an Elasto-plastic Finite Element Analysis and a Direct Differentiation Approach (탄소성 유한요소법과 직접미분법물 이용한 박판성형공정에서의 설계민감도 해석)

  • Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.93-96
    • /
    • 2001
  • Design sensitivity is calculated in the sheet metal forming process with an elasto-plastic finite element analysis and a direct differentiation method The sensitivity analysis is concerned with the time integration the constitutive relation considering planar anisotropy, shell elements and the contact scheme. The present result is compared with the result obtained with the finite difference approach in deep drawing processes. The obtained sensitivity information is applied to the simple optimization process for the sheet metal forming process.

  • PDF

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.

A New Sensitivity-Based Reliability Calculation Algorithm in the Optimal Design of Electromagnetic Devices

  • Ren, Ziyan;Zhang, Dianhai;Koh, Chang Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.331-338
    • /
    • 2013
  • A new reliability calculation method is proposed based on design sensitivity analysis by the finite element method for nonlinear performance constraints in the optimal design of electromagnetic devices. In the proposed method, the reliability of a given design is calculated by using the Monte Carlo simulation (MCS) method after approximating a constraint function to a linear one in the confidence interval with the help of its sensitivity information. The validity and numerical efficiency of the proposed sensitivity-assisted MCS method are investigated by comparing its numerical results with those obtained by using the conventional MCS method and the first-order reliability method for analytic functions and the TEAM Workshop Problem 22.

Sensitivity of the Eigenvalues of Beams to the Change of Element Correction Factors (유한요소의 수정계수 변화에 대한 보 고유치의 민감도)

  • Lee, Gun-Myung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1678-1683
    • /
    • 2003
  • Some characteristics of the sensitivities of the eigenvalues for beams have been found in the paper. For cantilever beams and simply supported beams, the sensitivities of the eigenvalues to the stiffness correction factor of one element are equal and opposite to the sensitivities to the mass correction factor of the symmetrically positioned element. The relationship means that to increase stiffness in one element has the same effects on the eigenvalues as to decrease mass by the same proportion in the symmetrically positioned element. For beams with other boundary conditions, however, the relationship does not hold.

  • PDF

Sensitivity Analysis of the Galerkin Finite Element Method Neutron Diffusion Solver to the Shape of the Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.29-42
    • /
    • 2017
  • The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.

Round robin analysis to investigate sensitivity of analysis results to finite element elastic-plastic analysis variables for nuclear safety class 1 components under severe seismic load

  • Kim, Jun-Young;Lee, Jong Min;Park, Jun Geun;Kim, Jong-Sung;Cho, Min Ki;Ahn, Sang Won;Koo, Gyeong-Hoi;Lee, Bong Hee;Huh, Nam-Su;Kim, Yun-Jae;Kim, Jong-In;Nam, Il-Kwun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.343-356
    • /
    • 2022
  • As a part of round robin analysis to develop a finite element elastic-plastic seismic analysis procedure for nuclear safety class 1 components, a series of parametric analyses was carried out on the simulated pressurizer surge line system model to investigate sensitivity of the analysis results to finite element analysis variables. The analysis on the surge line system model considered dynamic effect due to the seismic load corresponding to PGA 0.6 g and elastic-plastic material behavior based on the Chaboche combined hardening model. From the parametric analysis results, it was found that strains such as accumulated equivalent plastic strain and equivalent plastic strain are more sensitive to the analysis variables than von Mises effect stress. The parametric analysis results also identified that finite element density and ovalization option in the elbow elements have more significant effect on the analysis results than the other variables.

Performance Evaluation and Sensitivity Analysis of the Pantograph for the High-Speed Train Using Finite Element Analysis Method (유한요소해석 기법을 이용한 고속철도용 판토그래프 집전성능 평가 및 민감도 분석)

  • Lee, Jin-Hee;Paik, Jin-Sung;Kim, Young-Guk;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1874-1880
    • /
    • 2011
  • In this paper, sensitivity analysis of the pantograph for the high-speed Train was conducted using finite element analysis method. Dynamic interaction of catenary-pantograph model was simulated by using a commercial finite element analysis software, SAMCEF. Pantograph was assumed to be three degree of freedom mass-spring-damper model and the pre-sag of the contact and messenger wire was implemented due to gravity. The span data of the actual high-speed line and specification of pantograph for high-speed train was applied in the analysis model, respectively. The reliability of the simulation model is verified by comparing the contact force results of simulation and test. Through the simulation, mean contact force and its deviation was evaluated and then sensitivity of the pantograph was analyzed.

  • PDF

Structural Optimization Using Stochastic Finite Element Method (확률 유한요소법을 사용한 구조물 최적설계)

  • 임오강;이병우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1920-1929
    • /
    • 1994
  • The stochastic finite element method(SFEM) based structural optimal design is presented. Random system response including uncertainties for the design variable is calculated with first order perturbation method. A method for calculating the sensitivity coefficients is developed using the equilibrium equation and first-order perturbed equation. Numerical results are presented for a truss, frame and plate structures with displacement and stress constraints. The sensitivity calculation proposed here is compared with finite difference method. A nonlinear programming technique is used to solve the problem. The procedure is easily incorporated with existing deterministic structural optimization.

Optimal Shape Design of Container in HIPing Process by the Finite Element Method (유한요소법을 이용한 HIPing 공정에서의 컨테이너 형상 최적설계)

  • 전경달
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.257-260
    • /
    • 1999
  • It is very important to design the shape of container in HIPing process since the final shape and relative density distribution of the product are decisively dependent on the shape of container. A derivative based approach to determine the shape of container in HIPing process is presented. In this approach the optimal design problem is formulated on the basis of the finite element process. The process model the formulation for process optimal design and the schemes for the evaluation of the design sensitivity and an iterative procedure for optimization are described. In comparison with finite difference scheme the validity of the schemes for the evaluation of the design sensitivity is examined.

  • PDF