Performance Evaluation and Sensitivity Analysis of the Pantograph for the High-Speed Train Using Finite Element Analysis Method

Jin-Hee Lee, Jiung-Sung Park, Young-Guk Kim, Tae-Won Park

ABSTRACT

In this paper, sensitivity analysis of the pantograph for the high-speed Train was conducted using finite element analysis method. Dynamic interaction of catenary-pantograph model was simulated by using a commercial finite element analysis software, SAMCEF. Pantograph was assumed to be three degree of freedom mass-spring-damper model and the pre-sag of the contact and messenger wire was implemented due to gravity. The span data of the actual high-speed line and specification of pantograph for high-speed train was applied in the analysis model, respectively. The reliability of the simulation model is verified by comparing the contact force results of simulation and test. Through the simulation, mean contact force and its deviation was evaluated and then sensitivity of the pantograph was analyzed.

1. 서 론

철도차량의 동력장치는 가선계(catenary system)로부터 인가되는 전력에너지로 공급받아 구동하게 되며, 가선계는 차량의 판도그래프(pantograph)와 상호작용을 하게 된다. 이러한 철도차량의 운영속도를 유지하기 위해서는 검전장치로 부터의 안정된 전력공급은 필수적인 사항이라 할 수 있다. 최근 철도차량의 고속화에 대한 수요와 관심이 높아지면서 고속 주행시 가선계와 판도그래프 사이의 상호작용에 대한 연구가 활발하게 진행되고 있다. 철도차량이 고속 주행을 하더라도 차량의 급동, 바람에 의하여 가선계에 가해지는 외력 등과 관계없이 안정된 접촉을 유지하고 이선(loss of contact)을 최소화 하는 것이 검전장치가 반드시 충족하여야 하는 성능이다. 특히, 시속 300km 이상의 고속 주행시에는 차량의 완활한 주행과 안전성의 확보를 위하여 접전성능과 관련된 사항에 대한 사전 성능 평가는 반드시 수행되어야 한다.

이런 접전성능에 영향을 미치는 인자로는 판도그래프의 설계적 특성, 가선과 같은 기반 시설의 제원과 운영속도, 공력, 외력 등의 환경적 요소를 들 수 있으나, 그 중에서도 판도그래프의 특성이 접전성능과 가장 밀접한 연관성을 지닌다. 고속철차의 경우 판도그래프는 차량의 주행 안정성과 접전 시설의 유지에 매우 중요한 역할을 하기 때문에 공기저항 및 외풍에 대하여 영향을 최소화하고 가선과의 안정적인 접촉상태를 유지해야 한다. 높은 접촉력은 판도그래프의 접전관과 가선의 과다한 마모를 발생시켜 시설의 유지보수 측면에서 불리한 영향을 초래하며 반대로 부족한 접촉력은 차량에 충분한 전력을 공급
하는 데에 문제를 야기할 수 있다. 또한, 시속 300 km 이상의 고속주행시, 차량의 운행속도가 점증으로 인하여 발생하는 가속의 파동속도 보다 클 경우 여전이 발생할 확률이 증가하고 이로 인하여 아크가 발생할 시 접점시스템에 심각한 손상을 발생시킬 수 있다. 따라서 가선과 접전관 사이의 일정한 접촉력 유지 여부는 매우 중요하다.

본 논문에서는 상용 유한요소 해석 프로그램인 SAMCEF를 이용하여 가선과 판토그래프를 모델링하고 고속 주행시 가선과 판토그래프 간의 동적 상호작용을 해석하였다. 가선의 제원은 실제 시험선의 제원을 적용하였으며, 판토그래프는 복잡한 설계 모델을 3차유도의 절량-스프링-댐퍼 모델로 가정하여 모델링하였으며, 그 설계변수는 실제 판토그래프의 동적 보정기를 통하여 얻어낸 특성을 이용하여 적용하였다. 시속 305 km/h의 주행속도를 통하여 평균 접촉력, 접촉력의 표준편차 등을 산출하였으며, 해석 모델의 신뢰성은 실제 철도차량의 시험 데이터와의 비교를 통하여 검증하였다. 검증된 유한요소 모델을 이용하여 접촉력 변화에 가장 큰 영향을 미칠 것으로 판단되는 판토그래프를 대상으로 평균접촉력과 표준편차에 대한 민감도를 분석하였다.

2. 유한요소해석 모델

2.1 판토그래프 모델

판토그래프는 앞서 언급하였듯이 복잡한 형상을 갖는 실제 시스템을 수직방향의 병진 자유도를 갖는 3차유도의 절량-스프링-댐퍼 모델로 가정하여 모델링하였다. 해석 모델의 제원을 확보하기 위하여 실제 판토그래프의 동적 보정기를 통하여 얻어낸 수직방향 전동특성을 결과를 이용하였다. 동적 보정시험은 판토그래프 모델에 일정 범위 주파수를 갖는 주기 함수 형태의 가전을 입력하고 그에 따른 변위 응답을 파악하는 방식으로 수행되었고, 이 결과를 이용하여 얻어낸 리셉턴스(receptance)로 시스템의 응답 특성을 정의하였다. 여기서, 리셉턴스는 시스템에 임력되는 가전 함수에 대한 변위 응답의 비를 의미하는 것으로 판토그래프와 같이 저주파수 범위의 전동에 관심이 있는 동적 시스템에 관하여 파악할 때 활용되는 특성이다.

표1. 판토그래프의 기계적 특성치

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>upper</td>
<td>(M_1 = 6)</td>
<td>(K_1 = 12,340)</td>
<td>(C_1 = 30)</td>
</tr>
<tr>
<td>middle</td>
<td>(M_2 = 12)</td>
<td>(K_2 = 13,600)</td>
<td>(C_2 = 0)</td>
</tr>
<tr>
<td>low</td>
<td>(M_3 = 10)</td>
<td>(K_3 = 0)</td>
<td>(C_3 = 64.9)</td>
</tr>
</tbody>
</table>

그림1. 시험과 시뮬레이션 결과 간의 리셉턴스 비교
동적 보정시험을 통하여 얻어낸 주파수 특성과 3차수로 절편 모델의 운동방정식을 이용하여 유도한 주파수 특성을 비교하여 해석 모델의 재현을 추출하였고, 최적화 기법을 적용하여 표1과 같이 실제 시스템과 가장 유사한 모델의 재현을 최종적으로 확보하였다. 그림 1은 실제 판도그래프 시스템의 동적 보정시험을 통하여 얻어낸 리셉턴스와 표 1의 재현이 적용된 3차수 해석 모델의 리셉턴스를 나타내고 있다. 그래프 상에서 두 결과에 대하여 상이한 부분이 다소 존재하지만 전체적인 가동과 공진 주파수 대역이 일치하는 것으로 보아 해석 모델이 실제 시스템을 잘 반영한다고 판단할 수 있다.

2.2 가선계 모델

본 논문에서 적용된 가선 모델은 실제 시험선의 가선계와 동일한 단순가선 형태이며, 그림 2는 1 경간(Span)에 대한 정보를 나타낸다. 해석 모델에서는 10경간을 모델링하였다. 1개의 경간의 길이는 50 m로 크게 전자선(contact wire)과 조가선(messenger wire), 8개의 드로퍼(dropper)로 구성되어 있다. 전자선은 판도그래프와 접촉이라는 직접적인 상호작용을 통하여 철도차량에 전력을 공급하는 역할을 하고 있으며, 드로퍼는 전자선과 조가선을 상호 연결시켜 접촉선의 하중을 조가선에 분산 전달하는 역할을 한다. 1경간에서 전자선의 양 끝은 고정지지구(steady arm)로 지지되어 있으며, 조가선의 양 끝은 가동 브라켓(moving bracket)에 의하여 지지되고 있다. 전개 10 경간의 전자선과 조가선의 양 끝단은 가선의 처짐을 최소화하기 위하여 일정한 장비가 인가되며, 본 논문의 모델에서는 전자선과 조가선에 각각 20 kN과 14 kN의 장비가 인가된다. 또한 드로퍼는 실제 시스템의 특성을 유사하게 표현하기 위하여 한장지 50 kN/m, 압축시 0 kN/m인 스프링 요소로 모델링 하였다. 그 밖에 전자선과 조가선의 물성치는 표 2에 나타내었다.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sectional area</th>
<th>Elastic modulus</th>
<th>Poisson’s ratio</th>
<th>Mass density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messenger wire</td>
<td>66.49 mm²</td>
<td>110 GPa</td>
<td>0.1</td>
<td>0.605 kg/m</td>
</tr>
<tr>
<td>Contact wire</td>
<td>150 mm²</td>
<td>180 GPa</td>
<td>0.1</td>
<td>1.334 kg/m</td>
</tr>
</tbody>
</table>

그림 2. 가선계 유한요소 해석 모델
3. 집전성능 해석 및 검증

3.1 집전성능 해석 및 검증

3차원 범용모로 구성된 전자선과 판토그래프간의 고속 주행시 나타나는 동적 기동을 해석하기 위하여 그림3과 같은 시뮬레이션 환경을 구축하였다. 판토그래프와 가선의 모델은 2장에서 제시한 모델을 사용하였다. 시뮬레이션은 대략적으로 다음과 같은 과정으로 수행되었다. 먼저 0-10초 사이에는 가선의 초기 조정 현상을 구현하기 위하여 판토그래프가 분리된 상태에서 전차선과 조가선에 전력을 인가하여 자유 낙하시켰다. 경간 사이의 지지부와 드라이프에 의해 가선은 일정시간 후에 안정된 형상을 갖게 된다. 10-15초 사이에는 초기 조정현상이 완전히 구현된 가선에 ± 200 mm의 stagger를 적용하였다. stagger는 가선을 본래 중앙선 위치에 대하여 일정한 간격으로 지그재그 형태로 편차를 주는 것으로, 판토그래프의 접전장치가 가선과 접촉하는 영역을 접전판 전체로 고효 분산시키는 역할을 하며, 시뮬레이션 모델상에서는 접전장치의 마모를 엄격히 환경에 요구하는 것은 있지만, 실제 시스템과 보다 유사한 환경을 구현하기 위하여 본 모델에서 고려되었다. stagger 구현에 대하여도 가선의 변동이 안정화 되면 15-20초 간은 판토그래프의 접전 압력(공력 포함) 145 N을 인가하여 가선과 판토그래프를 접촉하게 하였다. 해석 모델에서 주행시 발생하는 가선과 판토그래프간의 실제 상호작용을 표현하기 위하여 SAMCEF에서 제공하는 접점-요소 접촉(node to face of an element contact)을 적용하였고 접촉력은 접촉이 발생하는 평균 약 50 kN/m(대략적으로 큰 값)의 스프링을 추가하여 스프링에서 발생하는 상대 변력을 가선과 판토그래프 사이의 접촉력으로 간주하여 산출하였다. 압력형 인가가 완료되면, 2초부터는 시속 305 km로 실제 주행을 하고 접촉력을 산출하게 된다. 그림4는 주행 시뮬레이션을 통하여 얻어낸 결과 및 동일한 구간에 대한 본선 시험선 시험의 접촉력 변동이며, 표3은 5, 6구간에 대한 동태처리 결과이다. 결과는 관심 주파수 영역인 0-20 Hz로 저역 동과 필터를 이용하여 처리하였다. 시뮬레이션 해석결과를 보면, 주기적인 변화 추이를 보이며 이는 경간 동과 시 지지부에 의하여 접촉력이 증가하였다가 동과 후 다시 감소하는 형태로의 것을 확인할 수 있다. 실험결과의 경우에는 왕간의 주기적인 기동을 보이지만 전체적으로 불규칙한 형태로 접촉력이 측정되었다. 하지만 이를 동태 처리한 경우에는 해석 결과와 실험결과의 접촉력 평균이 각각 144.5 N과 145.8 N, 표준편차는 각각 38.5 N과 39.5 N으로 전체적인 수치가 매우 유사한 것을 확인할 수 있다. 판토그래프의 접전성능을 판단할 때, 시간에 따른 접촉력의 변동 추이 보다는 표3에 제시된 경량적 수치들로 판단함으로 이는 동태 해석 모델의 신뢰성을 검증할 수 있다.

![그림3. 가선계-판토그래프 해석 모델](image)

1877
4. 판토그래프 민감도 분석

실험결과와의 비교를 통해 검증된 점진성능 분석을 위한 수치해석 모델을 이용하여, 접촉력의 평균값과 표준편차에 대하여 판토그래프의 설계변수들이 미치는 영향을 알아보기 위하여 민감도 분석을 수행하였다. 판토그래프의 민감도 분석을 위한 설계변수는 3차유도 절강-스트립-덤핑 등의 총 9개 변수 중 동력성에 영향을 미칠 것으로 판단되는 \(M_1 \), \(M_2 \), \(M_3 \), \(K_1 \), \(K_2 \), \(C_3 \) 총 6개의 변수를 선택하였다. 민감도 분석을 위한 방법으로는 수치적 방법, 해석적 방법, 실험적 방법이 있지만 본 논문에서는 실험계획법을 이용한 실험적 방법을 적용하였다. 표4는 설계변수 및 수준을 나타낸다. 민감도 분석 대상이 되는 요인의 수준은 2수준으로 채택하였으며, 최대값과 최소값을 기준 설계치를 기준으로 하여 10% 증감한 값을 사용하였다. 설계변수는 교호작용이 없는 가정하에 Plackett-Burman design table을 적용하였고, 목적함수는 위해서 인급한 것처럼 접촉력의 평균과 표준편차를 선정하였다. 해석은 젤도차량이 10경간(s50-1 type)을 시속 305 km으로 주행하는 시나리오로 선택하였고, 5-6경간의 해석 결과에 대해서 필터링 및 동계 처리를 하여 설계 변수의 변화에 의한 반응함수의 변화율을 파악하였다. 총 12번의 실험에 대한 Plackett-Burman design table 및 해석 결과는 표5에 정리하였다.
표4. 2수준 설계인자 및 범위

<table>
<thead>
<tr>
<th>Design Variables</th>
<th>unit</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>min(-1)</td>
</tr>
<tr>
<td>M₁</td>
<td>kg</td>
<td>5.4</td>
</tr>
<tr>
<td>M₂</td>
<td>kg</td>
<td>10.8</td>
</tr>
<tr>
<td>M₃</td>
<td>kg</td>
<td>9</td>
</tr>
<tr>
<td>K₁</td>
<td>N/m</td>
<td>11,106</td>
</tr>
<tr>
<td>K₂</td>
<td>N/m</td>
<td>12,240</td>
</tr>
<tr>
<td>C₃</td>
<td>Ns/m</td>
<td>58.41</td>
</tr>
</tbody>
</table>

표5. Plackett-Burman design table in 12 run

<table>
<thead>
<tr>
<th>No.</th>
<th>M₁</th>
<th>M₂</th>
<th>M₃</th>
<th>K₁</th>
<th>K₂</th>
<th>C₃</th>
<th>Mean contact force(Fₘₐₓ)</th>
<th>Standard deviation(σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>44.6851</td>
<td>39.9227194</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>44.7636</td>
<td>38.7013</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>44.7172</td>
<td>38.9846</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>44.6358</td>
<td>37.5397</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>44.7199</td>
<td>37.3036</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>44.6686</td>
<td>35.2233</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>44.6600</td>
<td>39.1622</td>
</tr>
<tr>
<td>8</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>44.7360</td>
<td>39.9370</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>44.8168</td>
<td>41.9885</td>
</tr>
<tr>
<td>10</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>44.7352</td>
<td>38.9813</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>44.6794</td>
<td>39.5771</td>
</tr>
<tr>
<td>12</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>44.6965</td>
<td>36.4863</td>
</tr>
</tbody>
</table>

해석 결과를 통하여 2수준 해석 결과로부터 2개의 목적항을 골라 2개의 반응항으로 예측하였고 다항식 형태의 반응함수를 추정하였다. 반응함수의 계수는 위의 design table의 결과 벡터에 계수 행렬의 pseudo-inverse를 취하여 산출할 수 있으며, 이는 곧 설계 변수의 변화에 따른 목적항의 결과 변화를 의미한다. 두 목적항에 다른 반응항을 가입하고 모두 두 단계의 반응함수를 추정하였다. 민감도 분석 결과, 점측력에 대해서는 M₂가 가장 민감한 반응을 보이며, 점측력의 표준편차에 대해서는 M₁, M₂, M₃ 순으로 민감하게 영향을 미치는 것을 확인할 수 있었다. 표5의 해석결과를 보면 평균 점측력의 경우 각 해석에 대하여 큰 차이를 보이지 않은 것을 알 수 있다. 이는 평균 점측력은 판도그래프에 인가되는 정직 압상력과 공력의 특성과 관련이 있는 것이기 때문이다. 따라서 판도그래프의 물성치의 적절 변동 폭의 변화는 점측력 변화 추이에는 영향을 미칠 수 있지만, 이를 통계 처리한 평균값으로의 변화에 큰 영향을 미치지 않음을 알 수 있다. 반대로 점측력의 표준편차는 판도그래프 구성품의 물성정보에 따라 변화하고 있음을 알 수 있으며 가전 판도그래프 사이의 점측력의 변차가 적은 것이 보다 안정된 점진성능을 의미한다고 보았을 때, 추후 최적설계 기법을 적용하여 본 판도그래프 성능 개선의 여지가 있을 것으로 판단된다.

\[Y_{\text{Contact Force}} = 2.0838e^{d} + 0.7772M_{1} + 3.7058M_{2} + 4.4639M_{3} - 2.368K_{1} - 2.216K_{2} + 0.7266C_{3} \]

\[Y_{\text{Deviator}} = 5.5621e^{d} + 176.622M_{1} + 117.746M_{2} + 95.3807M_{3} - 47.654K_{1} + 1.9704K_{2} - 51.598C_{3} \]
5. 결 론

본 논문에서는 유한요소해석 기법을 이용하여 고속 철도차대의 설계 성능 분석을 위한 수치모델을 개발하고 접촉력에 대한 관통그래프의 민감도 분석을 수행하였다. 관통그래프는 실제 복잡한 모델을 3차원으로 결합 모델로 단순화 하였으며, 모델의 설계변수들은 동적 보정시험 결과를 이용하여 유사한 기동을 보이는 특성치를 얻어냈다. 가선에 모델은 전차선, 조가선, 드로프 등으로 구성되었으며, 실제 시험선에 적용된 보정의 설계치와 기계적 특성치를 반영하여 구현하였다. 해석 모델은 실제 주행 환경을 고려하여 충격에 의한 가선의 초기 정렬 현상, stagger 현상, 정적 압수력 인가에 따른 접촉관과 가선의 접촉 등을 구현하였고, 추행산출을 통하여 추행거리에 따른 접촉력의 변화를 산출하였다. 통계적 처리를 통하여 얻은 평균 접촉력, 접촉력의 표준편차, 최대/최소 접촉력 등을 실제 시험선 시험 결과와 비교하여 유한요소해석 모델의 신뢰성을 검증하였다. 검증된 모델을 이용하여 실험계획법을 적용, 평균접촉력과 표준편차에 대하여 3차원 관통그래프로 결과, 스프링, 댐퍼 요소에 대하여 민감도 분석을 수행하였다. 민감도 분석 결과, 관통그래프의 물성치 변화가 평균 접촉력에는 큰 영향을 미치지 않으며, 접촉력의 표준편차에 대하여는 M_be, M_go, M_y가 주로 민감하게 영향을 미치는 것을 확인할 수 있었다. 본 민감도 해석 결과를 바탕으로 접촉력의 편차를 최소화하기 위한 최적 설계가 수행될 때, 현재 관통그래프의 성능을 개선할 수 있을 것으로 기대된다.

감사의 글

본 연구는 국토해양부 미래철도기술개발사업의 차세대고속철도기술개발사업 ‘분산형 고속철도 시스템 통합 및 충돌’과제의 지원을 받고 있음을 밝힙니다.

참고문헌