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3D Optimal Design of Transformer Tank Shields
using Design Sensitivity Analysis

Yingying Yao*, Jae Seop Ryu**, Chang Seop Koh**, and Dexin Xie**

Abstract - A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-
ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest
descent method with design sensitivity and mesh relocation method. For the design sensitivity formula,
the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy
current problems. A new 3D mesh relocation method is also proposed using the deformation theory of
the elastic body under stress to renew the mesh as the shape changes. The design sensitivity for the sur-
face nodal points is also systematically converted into that for the design variables for the parameter-
ized optimization application. The proposed algorithm is applied to the optimum design of the tank
shield model of the transformer and the effectiveness is proved.

Keywords: shape optimization, mesh regeneration, design sensitivity, deformation theory, eddy cur-

rent, transformer

1. Introduction

During the last decade, both the deterministic and non-
deterministic methods of optimization algorithms have been
developed and successfully applied to engineering design
problems. The non-deterministic optimization method, such as
the genetic algorithm and the evolution strategy, has been ap-
plied extensively because it often provides a global optimum
solution and can be easily combined with an existing finite
element performance analysis program. On the other hand,
through the deterministic methods, such as the gradient
method incorporated with design sensitivity analysis, some-
times falls into a local minima, it has been preferred since it
requires fewer computations of the objective function value [1,
2]. For the 3D shape optimal design, the deterministic method
combined with design sensitivity analysis is therefore thought
to be a good choice.

Design sensitivity analysis, which gives the gradient
vector of the objective function with respect to the design
variable, is well developed and successfully applied to
various 2D shape optimization problems [3-10]. For 3D
problems, however, the application is limited to the magne-
tostatic problem [1, 7). The 3D design sensitivity formula
was first derived for magnetostatic problems using the
boundary element method and applied to the design of
simple electromagnet [7]. With the finite element method,
the 3D design sensitivity formula is also derived in [1],
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where the adjoint variable is evaluated using the existing
performance analysis code for every design variable. Thus
the calculation of the design sensitivity is computationally
very expensive.

Another important part of the shape optimal design is
renewing the finite element mesh as the design variables
change. In this process, the mesh distortion must be mini-
mized to get an accurate finite element analysis result, and
the newly generated mesh should maintain the same topol-
ogy with the previous mesh [11]. There are two kinds of
finite element mesh renewing methods. One is to regener-
ate a new mesh according to the changed design variables
using an automatic mesh generator. This method may guar-
entee the quality of the finite element mesh, but the
integration with the performance analysis code and getting
a topologically exact mesh is difficult. The other is to
modify the latest mesh so that the mesh distortion is
minimized and the same topology is maintained. In the
early research for 2D shape optimization, the finite element
mesh modification method using the deformation theory of
the elastic body is well derived [11].

In this paper, a design sensitivity formula for the 3D
eddy current problem is derived in complex form using the
finite element and adjoint variable methods. In the finite
element analysis, the 4, A4—¢ method is employed and

one calculation of the adjoint variable is enough for the de-
sign sensitivity formula. Therefore, as the number of de-
sign variable increases, few extra computations are re-
quired. A 3D mesh regeneration method, based on the de-
formation of the elastic body under stress, is also presented.
Using the method, a topologically constant 3D mesh with
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relatively good quality is obtained. Finally, a 3D shape op-
timal design algorithm is developed by integrating the fi-
nite element performance analysis, the steepest descent
method with design sensitivity, and the mesh relocation
method. The developed algorithm is applied to the optimal
design of the transformer tank shield model.

2. Design Sensitivity for the 3D
Eddy Current Problem

The governing equations for the 3D electromagnetic sys-
tem with time harmonic excitation of frequency « are
given as follows [12]:

Vx(viA?—V(vV~A)+jcoaA+aV¢:0 nr ()
V. (—ja)crA—o’V&)=0
Vx(vVxA)-v{yv-A)=i, iny, @

where V) and V; are regions that contain the eddy current

and exciting current, respectively. Through the finite ele-
ment formulation, the governing equations result in the fol-
lowing complex matrix equation:

[SIX1=[0]. 3)

The shape optimization problem for the system includ-
ing eddy current can be generally expressed as

Minimize F(p)=F(p,X,X*)a @)
Subject to [p]" <[pl<[pl’

where F is the objective function, [p]is the design
variable vector composed of the surface nodal points,
Xand X are the real and imaginary parts of the state
variable, respectively, and [p]“ and [p]” are the lower and
upper limitations of the design variable, respectively. The
design sensitivity of the objective function with respect to the
design variables can be written, using complex analysis, as
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where the subscripts R and 7 denote the real and imaginary
part, respectively, and the superscript * means the
conjugate. After differentiating both sides of (3) with re-
spect to [p] and multiplying an adjoint variable vector

[AT , we get
[AT1S] d[[X ]

=0T 75 ](Q [SILX]). (6)

The adjoint variable may be chosen so that the coeffi-
cients of d[X1/d{p] in (5)and (6) are equal, and it may be
defined as

[ST[A] =§—§; 7

where it can be seen that the adjoint variable [1] is inde-

pendent of the number of design variables. The design sen-
sitivity formula are finally derived as

_dF___oF AV =S| [(O1-[S)X ) 8
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where [/{" 1is the solution of (3).
The design variables are renewed, using the computed

design sensitivity, as
o o
d[pl'

where o is the relaxation factor.

(rl... =[Pl -

3. Parameterization of the Tank Shield

In the design sensitivity formula, the design variables are
assumed to be surface nodal points. When the shape is pa-
rameterized, the design variables are not the surface nodal
points themselves but the parameters. The design sensitiv-
ity for the design variables, hence, should be computed by
using those for the surface nodal points. In this paper, the
tank shield of the transformer is parameterized in the fol-
lowing two ways. The first parameterization is achieved, as
shown in Fig. 1, using the linear functions. In this case, the
coordinate of the nodal point on the design surface is given as

=L —x +L"*l E(yi—yi) when yp <y <y (10)

J’k+1 yk

where (x;,y;) are the coordinates of node i and L, L;, Yo
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are explained in Fig.1. The design variables are defined as
the vertices L, (k=1,2,3,4).

(b)
Fig. 1 Parameterization of the tank shield using linear
functions: (a) overall view, (b) parameters.

Another parameterization is done, as shown in Fig. 2.
using the step functions. In this case, the coordinates of the
nodal point on the design surface are expressed as

x;=L-L, when y/ <y <y! (1
where (x;,y,) are the coordinates of node / and L, L;,y}
are shown in Fig. 2. The thickness of each step,
L,(k=1,2,3,4), is taken as a design variable.

(a) (b)
Fig. 2 Parameterization of the tank shield using step
functions. (a) overall view, (b) parameters

The relationship between the design variables and the
coordinates of the nodal points on the design surface can
be written in the following matrix form from (10) and (11):

[P]=1po]+[0][C] (12)

where [p]is the vector composed of the coordinates of the

nodal points on the design surface, the coefficient matrix
[#]is (nsx4) if the number of the nodal points on the de-

sign surface is ns, and [C]is the design variable vector.

The design sensitivity for the design variable can be
computed using (8) and (12) as follows:

dr__ dF dpl_ dF
diC] dpleCl dlp]

[4]. (13)

4. Mesh Regeneration using Structural
Deforming Analysis

The strain vector of an elastic body in 3D structural
analysis is defined as [13]

A T
Ou, Ou, Qu, Ou,  Cu. Cu, Cu. Su. lu,| (14)
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where, if the tetrahedral elements are employed, the dis-
placement vector is defined as

u=u(x,y,z)xk+u (x,y,2)y+u(x,p,z2)z
4

=Y Na: =[IN.IN, IN, N, ]2 (15)
i=l

e - [y v ¢ ¢ /
where 1 is the (3x3) identity matrix; a¢ :[a, .a’,a,.a, ] ;
i, j, m and p are the nodal points consisting of an element,

. r . .
a’ :[u,x, ,_\‘,u,:] ; and the shape function N, is defined

i

as
N, =(a, +b,x+c,y+d,z)/ 6V (16)

where V is the volume of the element and the other
symbols are defined as follows:

a, = (_1)’{x,/(ypzm _ym:p) + xm(y/zp —)’p—'",)

(17-a)

X, (VuZ ) = ¥,Z)}
b=CD{y,(zn—z,)+ vz, —z)+y,(z,~z,)} (17-b)
=0z, —x,) +2,(x, —x,)+ 2,(x, = x, )} (17-¢)
di =D {x, V= yp) + 50 (v, =y ) +x,(0, = v . (17-d)

The relationship between the strain and stress for the lin-
ear elastic material is given as [13]

o=D(e-¢)+0, (18)

where o,and &, are the initial residual stress and initial

strain, respectively; the stress o consists of direct and
shear; and D is the elasticity matrix given as
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where E is modulus and v is Poisson’s ratio.
Applying the finite element method with tetrahedral ele-
ments to (14) and (18), the matrix equation is obtained as

[K){a}=[f] (20)

where {a} = {ag,»an }T is the displacement of each node,
[f] is the forcing load vector, and [K] is the stiffness

matrix determined by the geometry and material constants
of the elastic body as follows [13]:
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Equation (20) is very similar to that of 3D static anisot-
ropic magnetic analysis by using the nodal element. The
consistent and interrelated property of the deformations in
an elastic body can be regarded as a design increment field.
In this paper, the property is used for the mesh relocation
during the optimal shape design of the electromagnetic
device by writing (20) as

[KJ{Ax} = {f} (23)

where [K] is the global stiffness matrix for stress

analysis; {Ax} is the nodal displacement, that is, the
amount of relocation of the nodal coordinates {x}; and
{f} is a fictious load force to control the mesh density

appropriately. The perturbation of the boundary can be
considered as simply a displacement at the boundary. With
no additional external forces and given displacements at
the boundary, (23) can be used to find the displacements of
the whole nodes. Equation (23) can be rewritten as follows
in segmented form:

Kpp KdeAxb}:{be 24
[de Kaa || Axy 0 29

where {Ax,}is the known perturbation of nodes on the
boundary, {Ax,} is the unknown nodal displacement
vector for the interior nodes, and { b} is the fictitious

boundary force acting on the boundary. The unknown
interior nodal displacement vector can be obtained from

[K g Jx g } = =[K 4 X, } (25)

To evaluate {Ax,}, we must suppress all the degrees of

freedom that represent the fixed shape contour of a domain in
the finite element analysis. Since this structural analysis is
used merely to get a proper relocation of the interior nodes
from the displacement of the surface nodes, no emphasis is
placed on simulating actual deformation of a physical struc-
ture. Therefore the material parameters related to (23) could
be chosen freely. To limit the computation efforts for mesh
regeneration, only part of the electromagnetic analysis region
can be defined as the structural analysis.

If the nodal displacements are small, the above
mentioned method is sufficient to obtain a good mesh
quality with smooth shape. However, when the nodal
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displacements are quite large, some elements might be
distorted. In this cases, a mesh smooth scheme to adapt in-
terior nodes is suggested [14]:

nu\

(x,),. =(-a)(x,),, +ad x, /n (26)

i=l

where node n is relocated with a specified parameter o

such that O0<a <1.,n is the number of nodes connected

max

tonode n,and X,; arethe coordinates of node ni.

5. Numerical Shape Optimization Examples

By integrating the finite element performance analysis,
the steepest descent method with design sensitivity, and the
mesh relocation method, a novel 3D shape optimal design
algorithm is developed and summarized in Fig. 3 The de-
veloped algorithm is applied to the optimal design of the
transformer tank shield model. The transformer tank shield
models, shown in Figs. | and 2, are the benchmark model
proposed by the Investigation Committee of the IEE of Ja-
pan for reducing the volume of the shielding plate and for
constraining the maximum eddy current density J,, at

the tank within a specified value J,,,(0.24x10° 4/m") to

prevent the local over heating [2]. The tank plate is made
of conducting steel, whose conductivity and relative
permeability are 0.75x10'S/m and 1000, respectively,
while the shielding plate is made of non-conducting grain-
oriented silicon steel of which the relative permeabilities
are 3000 and 30 for the easy and hard axes, respectively.
The exciting current has 5484 AT (12A(max), 457 turns,
60Hz).

Input
Initial Shape, Design Variables, F.E. Model

v
Move Surface Nodes

{3D Eddy Current Analysis J‘—‘—
FCalculate Adjoint Variable Vector ||F E. Mesh Regeneration

4 h
For all Moving Points

Compute Sensitivity
)

(Update Design Variables }——7

Fig. 3 The optimization system based on design sensitivity
analysis

The objective function and constrains are defined as

- T 3 s .
Fe F; =} [m] i ; while J ., <Jom, @7
Fy=(Jom =S [AI ] while J =S o
0< L. L, L. L, <0.01 {m] (28)

where J,, and J

allowable values of the maximum eddy current densities in
the tank plate, respectively, and J,,, is set to be less than

J

are the computed and maximum

(1A

ems ©

The tank shield shape is parameterized in two ways, as
shown in Figs. 1 and 2, using the linear functions and step
functions, respectively. In both parameterizations, the
design variables are taken as the dimensions L. L,. Ls. Ly,

and the design sensitivities are calculated as

df _ pdf, db. (29)

a0 Pa T dn

where the coefficients (B.y) are set to (0.7,0.3) when J,,

is larger than J,, and (0.3,0.7) when J,, is less than
Jems, TESPECtively.
J (A/m2) V (m?)
em
3.6x1054 Volume V 41.0x10+
-------------- Current Density J
3.4x1054 | em
19.0x10-
3.2x1054
sd 4
30x10°7 4 Spacified J_18.0x10%
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2.8x1054 i
26x105] | \ 47.0x10
2.4x105 1 i
................................. . 6.0,\’10'5
2.2x105 v r

=4

s 1o 15 20 25
Iteration Number
Fig. 4 The variations of the maximum eddy current density
and the volume when the shape is parameterized us-
ing the linear function

When the tank shield shape is parameterized using the
linear functions, the optimum result is obtained after 20
iterations. Fig. 4 shows the variations of the maximum
eddy current density at the tank and the volume of the tank
shield during the optimization process. It can be seen that
during the first few iterations both the maximum eddy
current density and the volume are reduced simultaneously.
but reducing one, on the whole, makes the other increase.
From the optimization experience, the coefficients in (29)
may be varied for faster convergence. The initial and
optimized dimensions of the tank shield are compared in
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Table 1, which indicates that the maximum eddy current
density at the tank is kept less than the specified value
while the volume of the shielding plate is much reduced.
Figs. 5 and 6 compare the distributions of the magnetic
flux density at the symmetric plane and the distributions of
the eddy current at the tank, respectively, for the initial and
optimized shapes. The relocated meshes for the shielding
plate during the optimization process are shown in Fig. 7.

When the tank shield is parameterized using the step
functions, the optimized shape of the shielding plate is
obtained after 18 iterations. Fig. 8 shows the variations of
the maximum eddy current density at the tank and the
volume of the shielding plate. Note that reducing the
volame while keeping the maximum eddy current density
lower than the specified value is very difficult. Table II
compares the dimensions of the shielding plate for the
initial and optimized shapes. Since the eddy current at the
tank is reduced, the eddy current loss is also reduced from
46.069[mW] with initial shape to 40.434[mW] with the
optimized shape. Figs. 9 and 10 compare the distributions
of the magnetic flux lines at the symmetry plane and eddy
current densities on the tank, respectively, for the initial
and optimized shielding plate. Fig. 11 compares the finite
element meshes for the initial and final shapes of the
shielding plate and shows that the original mesh topology
is maintained and the relocated mesh quality is also good.

TABLEI
RESULTS OF THE SHIELD OPTIMIZATION
Ll LZ L3 L4 4 Jem
(mm) (m?) (A/m?)
Initial 250 250 250 250 1.000E-4 3.64026E5
Optimal  4.14 216 057 030  0.659E-4 2.35463E5

/
7

(@ (b)
Fig. 5 Distributions of the magnetic flux line. (a) with the
initial shape of shielding plate, (b) with the
optimized shielding plate

. DOODE+DO
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L TL63E+06
. 1357E+06
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L 1745E+06
. 193%E+06
L 2133E+06

L 23276+08

(b)
Fig. 6 Distributions of the eddy current density at the tank.
(a) with the initial shape, (b) with the optimized
shape

r'y

it
iy
i
J“‘& F

Fig. 7 The relocated meshes for the shielding plate during
the optimization process, where the arrows indicate
the moving directions and amounts computed from
design sensitivity
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Fig. 8 The variations of the maximum eddy current density
and the volume when the shielding plate is param-
eterized using the step functions

TABLE DI

DIMENSIONS OF THE SHIELDING PLATE WHEN PARAMETERIZED USING STEP FUNCTIONS

Ly L Ly L V Jem
(mm) (m®) (A'm?)
Initial shape 250 200 100 050 0.600E-4 3.23975E5
Optimal shape 344 229 127 049 0.749E-4 2.39120ES

i
| r/I/f,/,////’ 7
A

e

Fig. 9 Distributions of the magnetic flux line; (a) with the
initial shape of shielding plate, (b) with the
optimized shielding plate.

29

(b)
Fig. 10 Distributions of the eddy current density at the
tank; (a) with the initial shape, (b) with the opti-
mized shape.

(a) (b)
Fig. 11 The relocated meshes for the shielding plate when
it is parameterized using the step functions; (a)
initial shape, (b) optimized shape.

6. Conclusion

A new 3D shape optimization algorithm is developed for
the electromagnetic devices carrying the eddy current. In
the algorithm, the 3D finite element analysis, steepest de-
scent method with design sensitivity, and mesh relocation
method are combined. The proposed method converges
very fast because the method is basically a deterministic
one using the gradient information from the alternating sur-
face. Through the numerical applications to the tank shield
of transformer, the strategy using the adjoint variable and
design sensitivity is proven to be very effective for the 3D
shape optimization with small computational efforts. The
proposed mesh regeneration method is also proven suc-
cessful to map the surface displacements to the finite ele-
ment mesh of the body while maintaining the original mesh
topology.
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