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A New Sensitivity-Based Reliability Calculation Algorithm  
in the Optimal Design of Electromagnetic Devices 
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Abstract – A new reliability calculation method is proposed based on design sensitivity analysis by 

the finite element method for nonlinear performance constraints in the optimal design of 

electromagnetic devices. In the proposed method, the reliability of a given design is calculated by 

using the Monte Carlo simulation (MCS) method after approximating a constraint function to a linear 

one in the confidence interval with the help of its sensitivity information. The validity and numerical 

efficiency of the proposed sensitivity-assisted MCS method are investigated by comparing its 

numerical results with those obtained by using the conventional MCS method and the first-order 

reliability method for analytic functions and the TEAM Workshop Problem 22. 
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1. Introduction 
 
 

In an engineering optimization problem, a nominal 

design obtained by using conventional deterministic 

optimization method, which does not take into account the 

uncertainties in design variables, usually gives the best 

performance. However, in the practical problem, the 

uncertainties in design variables such as manufacturing 

tolerance, deviations of the material constant, and changes 

in operating conditions are inevitable. Consequently, the 

design variables will deviate from their nominal values due 

to the existence of uncertainty [1]. What’s more, the 

uncertainties will move the optimal design to the infeasible 

region, as shown in Fig. 1, and then give a far worse 

performance than the original optimal design. Therefore, 

there is a strong increasing requirement to develop one 

algorithm for checking the reliability of a design [2]. 

The reliability of a design is defined as the probability of 

satisfying the constraint function, when the design 

variables deviate from their nominal values in predefined 

uncertain region. As shown in Fig. 1, the design A obtained 

from deterministic optimization algorithm can show better 

performance than any other designs in the feasible region. 

When there exist uncertainties in design variables, however, 

it has higher probability of turning to the design A* which 

does not satisfy the given constraints. On the contrary, the 

design B with a little worse performance, can guarantee all 

constraints even perturbed by uncertainties in design 

variables. In this sense, design B is considered as a more 

reliable design than design A. 

For the quantitative evaluation of reliability R for a 

nominal design, several methods have been developed [3]-

[5]: the reliability index approach (RIA), the performance 

measure approach (PMA), and the Monte Carlo simulation 

(MCS) method. In the RIA and the PMA, the reliability is 

calculated by solving an optimization problem where it is 

difficult to select a suitable initial searching point and step 

length at each iteration. The MCS method, a direct sampling- 

based approach, becomes computationally expensive 

especially when the constraint functions are to be calculated 

by using numerical methods such as the finite element 

method (FEM). It is because the MCS method requires as 

many sampling points as possible (like a few millions) to 

guarantee its accuracy [6]. To alleviate its expensive cost, 

the MCS method is normally applied to a meta-model [7] 

constructed by the Kriging or response surface method, 

however, until now, for reliability calculation, there is 

scarcely any researches about combination of the MCS and 

sensitivity analysis assisted by the FEM.  
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Fig. 1. Deterministic and reliable designs, where the gray 

rectangles denote uncertain regions.  
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To overcome disadvantages of the conventional MCS 

and the RIA methods, in this paper, a new reliability 

calculation algorithm is developed by incorporating design 

sensitivity analysis with the MCS method. The suggested 

algorithm is especially useful to performance constraints in 

the electromagnetic applications. Its efficiency and validity 

are demonstrated through some examples. 

 

 

2. Reliability Calculation Algorithms 
 
Hereafter in this paper, the vectors x=[x1, x2, …, xNx]

T 

and d=[d1, d2,…,dNd]
T (T means transpose) will denote 

uncertain and deterministic design variables, respectively. 

The following assumptions are made to simplify the 

explanation of subsequent contents:  

(1) the uncertain design variables are independent from 

each other and follow the Gaussian distribution, i.e. 

x~N(µ, σ) where µ and σ are vectors of mean values 

and standard deviations of x, respectively.  
(2) the linear or nonlinear constraints are expressed as: 
 

 ( , ) 0, andL U L U≥ ≤ ≤ ≤ ≤g x d x x x d d d  (1) 
 

where the vector g(g1, g2, …, gNg) consists of Ng 

constraint functions, the subscripts L and U stand for 

the lower and upper limits, respectively. 

 

The design space is, as shown in Fig. 1, divided into 

feasible and infeasible regions by constraint surface. Thus, 

mathematically, the probability of a design (x, d) being 
safe against the kth constraint, gk(x, d)≥0, can be written 
as: 

 

 ( )
( ) 0

( ) 0 ( )
k

k Xg
R P g d

≥
= ≥ = ϕ∫ x,d

x,d x x  (2) 

 
where ϕX(x) is the joint probability density function of 
constraint function. It is very difficult to find analytic 

expression for (2) so that different reliability calculation 

methods are generated based on approximation for (2).  

 

2.1 Conventional reliability calculation algorithms 
 
A. Monte Carlo Simulation Method 
 
In the MCS method, the uncertainties in design variables 

are represented by using the standard deviation of random 

numbers to be generated. For a given design (x, d), the 
reliability with respect to the kth constraint, gk, will be 

computed, as shown in Fig. 2, as follows:  

Step 1: Generate N random test points (ξj, d), (j=1,…,N) 

according to the statistical distribution of uncertain 

variables.  

Step 2: For each test point (ξj, d), calculate constraint 
function value and check if it satisfies gk(ξj, d)≥0 
or not.  

Step 3: Evaluate the reliability of the design (x, d) by the 

following equation: 
 

 ( ( ))kR g n Nx,d =   (3) 

 
where n is the number of test points satisfying the given 

constraint. 

It is obvious that, from (3), the reliability will be more 

accurate as the number of trials N increases. This method is 

very flexible and simple to implement, and theoretically 

can be applied to most kinds of problems. However, it will 

be much more time-consuming as the number of trials 

increases especially when numerical analysis is needed. 

Although this method has tried to incorporate the sampling 

techniques such as the importance sampling [8] and the 

Latin hypercube sampling [9] to improve the efficiency, its 

application in the electrical engineering is still very limited. 

 

B. Reliability Index Approach 
 
In this approach, the x-design space is transformed into a 

normalized u-design space, as shown in Fig. 3, so that a 
given design (x, d) may correspond to the origin of the u-
design space. For the ith independent Gaussian stochastic 

variable xi~N(µi, σi), the transformation is given as: 
 

 ( ) , 1, ,i i i iu x i Nx= − = ⋯µ σ  (4) 

 
where ui is the ith normalized stochastic variable with a 

zero mean value and unit standard deviation, ui~N(0, 1). 

For the independent non-Gaussian and dependent stochastic 

variables, other transformations such as Rosenblatt and 

Nataf transformations can be used [10-11]. 

The most probable point of failure (MPPF), u*, is 
defined, as shown in Fig. 4, in the normalized design space 

as the closest point on the constraint surface to the origin 

[12]. The MPPF can be found through an optimization 

problem: 
 

 
minimize

subject to ( ) 0=
u
g u

 (5) 

 
The reliability index (β) defined as the distance from the 

origin to the MPPF, as shown in Fig. 4 is calculated as: 

 

Fig. 2. The MCS method with 100,000 test points generated

for a specified design x=(2.8,2.0) and σ=0.5. 
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1
( ) .

Nx
ii
u=β= ∑  (6)  

 

Based on the reliability index, the reliability R of a 

design (x, d) for the kth constraint gk(x,d) ≥ 0 is calculated 
as: 

 

 ( )1R = − Φ −β  (7) 

 

where Φ(⋅) is the standard normal cumulative distribution 

function. 

The reliability calculated from (7) can be considered as 

the true one for the linear constraint functions. For the non-

linear constraint function, however, (7) is expected to give 

reliability for the linearly approximated constraint 

functions in the vicinity of the MPPF instead of the 

original non-linear ones as shown in Fig. 4. Because of the 

assumption of linearity, the above method is also known as 

the first-order reliability method (FORM) [13]. This 

method, for this reason, is expected to have big error as the 

constraint functions become strongly nonlinear although it 

is accurate for linear constraint functions. For example, for 

the nonlinear constraints 1 and 2, shown in Fig. 4, which 

physically have different reliabilities, the RIA gives same 

reliabilities by finding the same MPPF and the reliability 

index [8]. Another serious drawback of this method is 

related with the solution of (5), i.e. searching for the MPPF. 

In general, the MPPF is found by using optimization 

algorithm such as the steepest decent algorithm and the 

conjugate gradient method with an initial point on the 

constraint surface. This procedure, however, has many 

difficulties related with the selection of the initial point and 

proper step length at each iteration. The iterative method, 

therefore, becomes much more time-consuming and often 

fails to find the true MPPF so that its accuracy becomes 

worse than the expected one. 

 

2.2 Proposed sensitivity-assisted monte carlo simul- 
ation (S-MCS) method 

 

In general, the uncertainties in design variables are not 

quite big so that test points in the MCS method are 

generated in a relatively small range around the nominal 

design. As an example, if the uncertainties are related with 

the position of a point or the length of a line which defines 

the shape of a device, modern manufacturing techniques 

will confine uncertainties (or the standard deviations from 

the nominal values) within few or few ten microns while 

their design ranges are few or few ten centimeters.  

In view of the above fact, with main consideration of 

improvement of numerical efficiency for reliability 

analysis in the electromagnetic problem, the proposed 

reliability calculation method approximates the constraint 

function values at the test point using the sensitivity of the 

constraint function at the nominal value (x). 
For a given design (x,d), a test point (ξ,d) in the MCS 

method can be represented as follows: 

 

 ( ) ( , ), k k= ±∆ − ≤∆ ≤ξ,d x x d σ x σ  (8) 

 
where k is a specified confidence level. Then the ith 
constraint function gi(ξ,d) is approximated as: 

 

 ( ) ( , ) ( , ) ( )i i ig g g≅ +∇ ⋅ −ξ,d x d x d ξ x  (9) 

 

where the gradient vector of constraint function with 

respect to uncertain design variables is defined as follows: 

 

 
1 2

( ) , , ,

T

i i i
i

Nx

g g g
g

x x x

∂ ∂ ∂ 
∇ = ∂ ∂ ∂ 

x,d ⋯  (10) 

 

For the geometric constraints, the gradient vector can be 

g(x)=0

Nominal design

x1

x2

g(x)>0

g(x)<0

 

(a) constraint function in the x-space 

g(u)=0

Nominal design

u1

u2 g(u)>0

g(u)<0

 

(b) constraint function in the normalized u-space 

Fig. 3. Transformation from the x-design space to the 
normalized u-design space.  

β
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Infeasible region

u*, Most probable point of failure

(MPPF) 

u1
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0

Constraint 1
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Fig. 4. The reliability index approach. 
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calculated analytically. When the constraint function is 

related with performance analysis, the gradient vector can 

be computed by using sensitivity analysis.  

In the FEM analysis, main formulations of the first-order 

sensitivity analysis by the adjoint variable method are 

listed as follows [14]: 

 

 [ ][ ] { }K A Q=  (11) 

 
{ }[ ]

( ) [ ] [ ]
[ ] [ ] [ ]

i T
i T T T

C

g
g

=

∂  ∂∂
∇ = − ⋅ − 

∂ ∂ ∂ 
ɶ

A

QK
x,d A

x x x
λ  (12) 

 [ ][ ] [ ]ig= ∂ ∂K Aλ  (13) 

 

where [K] is the system matrix, [A] is the magnetic vector 

potential, {Q} is the forcing vector, [Ã] is the converged 
solution of (11), and [λ] is the adjoint variable vector. 

Once the gradient vector of the performance function is 

computed from (11) - (13), the nonlinear constraint can be 

treated as an explicit analytic function. The reliability 

evaluation, therefore, can be performed very efficiently by 

incorporating the sensitivity analysis with the MCS method, 

which results in a sensitivity-assisted MCS (S-MCS) 

method. 

 

 

3. Numerical Examples 
 

Two analytic test problems with nonlinear geometric 

constraints and the TEAM problem 22 are taken to check 

the efficiency and validity of the proposed S-MCS 

algorithm by comparing with the conventional MCS and 

the FORM methods.  

 

3.1 Analytic test problems with geometric constraints 
 

A. Mathematic Example 1 
 
For a test problem with two independent uncertain 

design variables x=[x1,x2]
T following Gaussian distribution 

x~N(µ, σ), the three nonlinear geometric constraints are 

defined, as shown in Fig. 5, as follows: 

 1 2
1 ( )= 1 0

5

x x
g − ≥x  (14-a) 

 
2 2

1 2 1 2
2

( 5) ( 12)
( ) 1 0

30 120

x x x x
g

+ − − −
= + − ≥x  (14-b) 

 3 2
1 2

80
( ) 1 0.

8 5
g

x x
= − ≥

+ +
x  (14-c) 

 

The corresponding gradient vectors of each constraint 

function with respect to uncertain design variables are 

driven as follows: 

 

 1 1 2 1
1

1 2

( ) , ,
5 5

T T
g g x x

g
x x

∂ ∂   
∇ = =   ∂ ∂   

x  (15-a) 

 2 2 1 2 1 2
2

1 2

5 3 32 3 5 8
( ) , ,

60 60

T T
g g x x x x

g
x x

∂ ∂ + − + −   
∇ = =   ∂ ∂   

x  (15-b) 

 3 3 1
3 2 2 2 2

1 2 1 2 1 2

160 640
( ) , ,

( 8 5) ( 8 5)

TT
g g x

g
x x x x x x

 ∂ ∂ −  −∇ = =   ∂ ∂ + + + +   
x (15-c) 

 

With the help of (15), the reliability for a given design 

can be calculated easily by using the proposed S-MCS 

method.  

Three different designs, A, B, and C are selected as 

shown in Fig. 5. For each design, the reliability is 

calculated by using the MCS, the S-MCS, and the FORM 

methods. In the FORM, the MPPF is found through solving 

(5) by particle swarm optimization method. In the 

reliability calculation, the following conditions are assumed: 

(1) the standard deviations for x1 and x2 are fixed to 0.3, 

(2) in the MCS and the S-MCS methods, one million 

trials are generated with a confidence level of 95%. 

 

The reliabilities and relative errors for constraints g1(x) 
and g2(x) are compared in Table 1 and Fig. 6, respectively. 

The relative errors are computed by taking the reliability of 

the MCS method as a reference value. From the 

comparisons, it can be seen that the S-MCS gives higher 

accuracies than the FORM for constraint g1(x). Even in the 
worst case for constraint g2(x), the S-MCS method can give 

a reliability as accurate as the FORM. Therefore, the S-

MCS without any optimization strategy is more effective 

than the FORM and the conventional MCS methods. 

 

Table 1. Reliabilities of different designs 

Calculation methods 
Constraint a Designs 

MCS S-MCS FORM 

A(2.80, 1.78) 0.47748 0.49282 0.50648 

B(2.85, 2.11) 0.85723 0.85499 0.83944 g1 

C(2.90, 2.40) 0.98623 0.97886 0.96937 

A(2.80, 1.78) 0.58705 0.55777 0.55929 

B(2.85, 2.11) 0.80599 0.78495 0.76448 g2 

C(2.90, 2.40) 0.93853 0.92758 0.92983 
a For all cases, the reliabilities for constraint g3 are 1.0. 
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Fig. 5. Geometric constraints of analytic test problem 1. 
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(b) relative error of constraint g2(x) 

Fig. 6. Relative errors of reliability calculation. 
 

B. Mathematic Example 2 
 
A strongly nonlinear function with two uncertain design 

variables (0≤x1, x2≤10) is shown as follows: 
 

 2 3 4( ) 1 ( 6) ( 6) 0.6( 6) 0g s s s t=− + − + − − − + ≥x  (16) 

 

where s=0.9063x1+0.4226x2 and t=0.4226x1-0.9063x2. The 

designs D and E as marked in Fig. 7 are selected to make 

the further validation of the proposed S-MCS method. 

It is obvious that the function in (16) is much more 

complex than that in (14). The calculation result under a 

standard deviation of σ=0.3 is given in Table 2. In this case, 
both the S-MCS and the FORM show a lower accuracy. It 

can be concluded that the S-MCS method is inadequate for 

problems with a stronger nonlinearity. For the accuracy 

improvement of the S-MCS method, the higher-order 

sensitivity analysis should be studied in the future research.  
 

3.2 TEAM problem 22 
 
TEAM problem 22, shown in Fig. 8, is a problem of the 

superconducting magnetic energy storage (SMES) system. 

In this problem, there are two design targets: 1) the stored 

magnetic energy in the system should be as close as to E0 = 

180 MJ, and 2) the stray magnetic field Bstray, which is 

evaluated at 22 equidistant sampling points on the line a 

and b as shown in Fig. 8, should be as small as possible. In 

order to achieve these targets, the geometric parameters of 

inside and outside coils, and current densities (J1, J2) 

should be optimized [15]. The objective function to be 

minimized is defined as follows: 
 

 

2
0

2
0

stray

norm

B E E
f

EB

−
= +  (17-a) 

 

22

2 2
,

1

1

22stray stray i

i

B B
=

= ∑  (17-b) 

 
where Bstray,i is the magnetic flux density on the ith 

sampling point and the reference stray field is Bnorm=3 mT. 

There are two critical constraints, as shown in Fig. 9, to 

keep the superconducting coils from quenching as follows: 
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Fig. 7. Geometric constraint of analytic test problem 2.  
 

Table 2. Reliabilities of different designs 

Designs MCS S-MCS FORM 

D(5.376,1.236) 0.62252 0.76778 0.75984 

E(6.300,2.210) 0.68705 0.65249 0.65280 
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Fig. 8. Configuration of the TEAM problem 22. 
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 ,( , ) 54 6.4 ( , ) 0, 1,2i i m ig J B i= − − ≥ =x d x d  (18) 

 
where Bm,i is maximum magnetic flux density in the ith coil. 

In the proposed sensitivity-based reliability calculation 

method, the constraints are approximated for the uncertain 

variables x as follows: 
 

 
0

0 0

( , )

( , ) ( , ) ( ), 1,2.i
i i

g
g g i

x d

ξ d x d ξ x
x
∂

≅ + ⋅ − =
∂

  (19) 

 
The sensitivity vector of the maximum magnetic flux 

density with respect to the uncertain variables is calculated 

with the help of the FEM as follows: 
 

 
, , { }

[ ] , 1,2
[ ] [ ] [ ]

m i m i T
iT T T

A C

d B B
i

d

Q
λ

x x x
=

∂ ∂
= + ⋅ =
∂ ∂

 (20-a) 

 ,[ ][ ] [ ], 1,2i m iB iK λ A=∂ ∂ =  (20-b) 

 
where the symbols have the same meaning as in (11)~(13). 

For all the reliability analysis, the test designs in the MCS 

and the S-MCS are set 10,000, and k in (8) is 1.96.  

 

A. Uncertainty is Considered in Geometric Variables 
 
From the published papers, several optimal designs are 

collected in Table 3. For design [15], the approximated 

constraint functions by the first-order sensitivity are 

compared with their target values. The corresponding 

relative errors are shown in Fig. 10 (a) and (b) when the 

maximum deviations of R2 and H2 change, respectively. 

The maximum relative errors are around 0.8% and 12%, 

respectively. Due to the advanced manufacturing technology, 

the maximum deviation may be smaller than the listed ones 

in Fig. 10, in other words, the accuracy of the first-order 

sensitivity approximation is allowable and practical for the 

real application.  

Taking geometric variables x=[R2, H2, D2]
T as uncertain 

variables with σ=[0.0153,0.01,0.01]T m, Table 4 shows 

calculation results of optimal designs in Table 3. Obviously, 

the S-MCS shows good agreement with the MCS method.  

 

B. Uncertainty is Considered in Physical Parameters 
 
Here, the uncertain physical parameters J =[J1, J2]

T 

follow Gaussian distributions with the standard deviation 

σ=[0.179,0.179]T MA/m2, respectively.  

Table 5 compares the reliabilities of five test designs 

from the MCS and the S-MCS, where the nominal current 

density is J0=[16.78, -15.51]
T MA/m2. For the constraint 

g1(J, d), the test designs have different reliabilities from 

0.5 to 0.9. From the viewpoint of accuracy for reliabilities, 

it is found that, with all test designs, the S-MCS gives 

almost same values with the conventional MCS. On the 

other hand, if comparing the computational cost, the 

proposed method requires just three times of the FEM calls 

(once for performance, twice for sensitivity calculations) 

while the MCS takes 10,000 times of the FEM analysis. It 

means the proposed method is much more efficient than 

the conventional MCS. 

Table 6 compares reliabilities calculated for optimal 

designs in Table 3, where the corresponding current 

densities are taken as uncertain ones with σ=[0.179,0.179]T 
MA/m2. The optimal design [15], however, is definitely  

 

Table 3. Optimal designs selected from published papers 

Ref. 
R1 

[m] 

H1/2 

[m] 

D1 

[m] 

R2 

[m] 

H2/2 

[m] 

D2 

[m] 

J1 

[MA/m2] 

J2 

[MA/m2] 

[15] 2.0 0.8 0.27 3.08 0.239 0.394 22.5 -22.5 

[16] 2.0 0.8 0.27 3.05 0.246 0.400 22.5 -22.5 

[17] 1.32 1.07 0.59 1.80 1.480 0.250 16.78 -15.51 

[18] 1.296 1.089 0.583 1.80 1.513 0.195 16.695 -18.91 

 

Table 4. Reliabilities for constraint g2≥0 

Designs [15] [16] [17] [18] 

MCS 0.98074 0.72312 1.00 0.83752 
S-MCS 0.98054 0.72001 1.00 0.83853 

 

Table 5. Reliabilities comparison for constraint g1≥0 

(D2,H2/2) MCS(A) S-MCS(B) Relative error δ a 

P1(0.244,1.490) 0.5068 0.5066 3.946E-2 

P2(0.248,1.490) 0.6763 0.6765 2.957E-2 

P3(0.250,1.500) 0.7644 0.7778 1.7530 

P4(0.253,1.482) 0.8759 0.8619 1.5983 

P5(0.251,1.500) 0.9298 0.9288 1.075E-1 

FEM calls 10,000 3 - 
a δ=|A-B|/A×100% and other design variables are same as [17]. 
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(a) when the maximum deviation of R2 is changed. 
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(b) when the maximum deviation of H2 is changed. 

Fig. 10. Constraint approximation using the first-order 

sensitivity. 
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Table 6. Reliabilities of designs in Table 3 

Designs [15] [16] [17] [18] 

f 0.088 0.122 0.29356 6.79E-3 
R(g1 ≥ 0) 1.00 1.00 0.72415 0.48363 
R(g2 ≥ 0) 0.99925 0.82744 1.00 1.00 

 

better than [16] because the former gives a better objective 

value and a higher reliability at the same time. Between the 

optimal designs [17] and [18], neither of them can be said a 

superior design because of the confliction between the 

objective value and the reliability level. 
 
 

4. Conclusion 
 
In order to guarantee a reliable solution with uncertain 

design variables in the optimal design of electromagnetic 

devices, a new reliability calculation algorithm is proposed. 

By incorporating the sensitivity analysis with the finite 

element method and the Monte Carlo simulation, the 

proposed S-MCS algorithm gives numerically efficient 

reliability for a given design especially when the constraint 

function is related with a numerical performance analysis.  

Due to the high numerical efficiency and accuracy, the 

proposed algorithm is expected to be widely applied in the 

area of the reliability-based design optimization. However, 

the application of the first-order function approximation 

will make the S-MCS insufficient when problems under 

consideration involve bigger uncertainties or the performance 

function is strongly nonlinear. In the subsequent research, 

the higher-order sensitivity analysis will be studied. 
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