• Title/Summary/Keyword: semiprimitive rings

Search Result 5, Processing Time 0.024 seconds

Rings Whose Simple Singular Modules are PS-Injective

  • Xiang, Yueming;Ouyang, Lunqun
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.3
    • /
    • pp.471-476
    • /
    • 2014
  • Let R be a ring. A right R-module M is PS-injective if every R-homomorphism $f:aR{\rightarrow}M$ for every principally small right ideal aR can be extended to $R{\rightarrow}M$. We investigate, in this paper, rings whose simple singular modules are PS-injective. New characterizations of semiprimitive rings and semisimple Artinian rings are given.

OPENLY SEMIPRIMITIVE PROJECTIVE MODULE

  • Bae, Soon-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.619-637
    • /
    • 2004
  • In this paper, a left module over an associative ring with identity is defined to be openly semiprimitive (strongly semiprimitive, respectively) by the zero intersection of all maximal open fully invariant submodules (all maximal open submodules which are fully invariant, respectively) of it. For any projective module, the openly semiprimitivity of the projective module is an equivalent condition of the semiprimitivity of endomorphism ring of the projective module and the strongly semiprimitivity of the projective module is an equivalent condition of the endomorphism ring of the projective module being a sub direct product of a set of subdivisions of division rings.

ON FULLY IDEMPOTENT RINGS

  • Jeon, Young-Cheol;Kim, Nam-Kyun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.4
    • /
    • pp.715-726
    • /
    • 2010
  • We continue the study of fully idempotent rings initiated by Courter. It is shown that a (semi)prime ring, but not fully idempotent, can be always constructed from any (semi)prime ring. It is shown that the full idempotence is both Morita invariant and a hereditary radical property, obtaining $hs(Mat_n(R))\;=\;Mat_n(hs(R))$ for any ring R where hs(-) means the sum of all fully idempotent ideals. A non-semiprimitive fully idempotent ring with identity is constructed from the Smoktunowicz's simple nil ring. It is proved that the full idempotence is preserved by the classical quotient rings. More properties of fully idempotent rings are examined and necessary examples are found or constructed in the process.

Principally Small Injective Rings

  • Xiang, Yueming
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.2
    • /
    • pp.177-185
    • /
    • 2011
  • A right ideal I of a ring R is small in case for every proper right ideal K of R, K + I ${\neq}$ = R. A right R-module M is called PS-injective if every R-homomorphism f : aR ${\rightarrow}$ M for every principally small right ideal aR can be extended to R ${\rightarrow}$ M. A ring R is called right PS-injective if R is PS-injective as a right R-module. We develop, in this article, PS-injectivity as a generalization of P-injectivity and small injectivity. Many characterizations of right PS-injective rings are studied. In light of these facts, we get several new properties of a right GPF ring and a semiprimitive ring in terms of right PS-injectivity. Related examples are given as well.