• Title/Summary/Keyword: semiprime

Search Result 126, Processing Time 0.018 seconds

ON PRIME AND SEMIPRIME RINGS WITH PERMUTING 3-DERIVATIONS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.789-794
    • /
    • 2007
  • Let R be a 3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-derivation ${\Delta}:R{\times}R{\times}R{\rightarrow}R$ such that the trace is centralizing on I. Then the trace of ${\Delta}$ is commuting on I. In particular, if R is a 3!-torsion free prime ring and ${\Delta}$ is nonzero under the same condition, then R is commutative.

INTUITIONISTIC FUZZY SEMIPRIME IDEALS OF A SEMIGROUPS

  • Ahn, Tae-Chon;Hur, Kul;Kang, Hak-Soo
    • The Pure and Applied Mathematics
    • /
    • v.14 no.3
    • /
    • pp.139-151
    • /
    • 2007
  • We introduce the concept of intuitionistic fuzzy semiprimality of a semigroup which is an extension of semiprimality in it. And we obtain a characterization of a semigroup that is a semilattice of simple semigroups in terms of intuitionistic fuzzy semiprime interior ideals.

  • PDF

HIGHER LEFT DERIVATIONS ON SEMIPRIME RINGS

  • Park, Kyoo-Hong
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2010
  • In this note, we extend the Bresar and Vukman's result [1, Proposition 1.6], which is well-known, to higher left derivations as follows: let R be a ring. (i) Under a certain condition, the existence of a nonzero higher left derivation implies that R is commutative. (ii) if R is semiprime, every higher left derivation on R is a higher derivation which maps R into its center.

ON THE ORDERED n-PRIME IDEALS IN ORDERED Γ-SEMIGROUPS

  • Siripitukdet, Manoj;Iampan, Aiyared
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • The motivation mainly comes from the conditions of the (ordered) ideals to be prime or semiprime that are of importance and interest in (ordered) semigroups and in (ordered) $\Gamma$-semigroups. In 1981, Sen [8] has introduced the concept of the $\Gamma$-semigroups. We can see that any semigroup can be considered as a $\Gamma$-semigroup. The concept of ordered ideal extensions in ordered $\Gamma$-semigroups was introduced in 2007 by Siripitukdet and Iampan [12]. Our purpose in this paper is to introduce the concepts of the ordered n-prime ideals and the ordered n-semiprime ideals in ordered $\Gamma$-semigroups and to characterize the relationship between the ordered n-prime ideals and the ordered ideal extensions in ordered $\Gamma$-semigroups.

THE PROPERTIES OF JORDAN DERIVATIONS OF SEMIPRIME RINGS AND BANACH ALGEBRAS, I

  • Kim, Byung Do
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.103-125
    • /
    • 2018
  • Let R be a 5!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. Then $[D(x),x]D(x)^2=0$ if and only if $D(x)^2[D(x), x]=0$ for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A) and if D is a continuous linear Jordan derivation on A, then we show that $[D(x),x]D(x)2{\in}rad(A)$ if and only if $D(x)^2[D(x),x]{\in}rad(A)$ for all $x{\in}A$ where rad(A) is the Jacobson radical of A.

LEFT DERIVATIONS ON BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the Jacobson radical of A, and hence every left derivation on a semisimple Banach algebra is zero.

  • PDF

ON LEFT DERIVATIONS AND DERIVATIONS OF BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.659-667
    • /
    • 1998
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the Jacobson radical of A, and hence every left derivation on a semisimple Banach algebra is always zero.

  • PDF

GENERALIZED DERIVATIONS AND DERIVATIONS OF RINGS AND BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.625-637
    • /
    • 2013
  • We investigate anti-centralizing and skew-centralizing mappings involving generalized derivations and derivations on prime and semiprime rings. We also obtain some range inclusion results for generalized linear derivations and linear derivations on Banach algebras by applying the algebraic techniques. Some results in this note are to improve the ones in [22].