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ON THE ORDERED n-PRIME IDEALS IN ORDERED
I'-SEMIGROUPS

MANOJ SIRIPITUKDET AND AIYARED IAMPAN

ABSTRACT. The motivation mainly comes from the conditions of the (or-
dered) ideals to be prime or semiprime that are of importance and interest
in (ordered) semigroups and in (ordered) I'-semigroups. In 1981, Sen [8]
has introduced the concept of the I'-semigroups. We can see that any
semigroup can be considered as a I'-semigroup. The concept of ordered
ideal extensions in ordered I'-semigroups was introduced in 2007 by Sirip-
itukdet and Iampan [12]. Our purpose in this paper is to introduce the
concepts of the ordered n-prime ideals and the ordered n-semiprime ideals
in ordered I'-semigroups and to characterize the relationship between the
ordered n-prime ideals and the ordered ideal extensions in ordered I'-
semigroups.

1. Preliminaries

In 1981, the concept and notion of the I'-semigroups was introduced by Sen
[8]. In 1997, Kwon and Lee [5] introduced the concepts of the weakly prime
ideals and the weakly semiprime ideals in ordered I'-semigroups and gave some
characterizations of the weakly prime ideals and the weakly semiprime ideals in
ordered I'-semigroups analogous to the characterizations of the weakly prime
ideals and the weakly semiprime ideals in ordered semigroups considered by
Kehayopulu [3]. In 1998, Kwon and Lee [4] introduced the ideals and the
weakly prime ideals in ordered I'-semigroups and gave some characterizations
of the ideals and the weakly prime ideals in ordered I'-semigroups analogous
to the characterizations of the ideals and the weakly prime ideals in ordered
semigroups considered by Kehayopulu [3]. In 1999, Lee and Kwon [6] gave two
new characterizations of the weakly prime ideals in ordered semigroups. They
proved two theorems as follow: Let a be a quasi-completely regular element of
an ordered semigroup S. If there exists an ideal not containing a, then there
exists a weakly prime ideal not containing a. Let P* be the intersection of
weakly prime ideals of an ordered semigroup S, a € P* and I be any proper
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ideal of S. Then a™ € I for some positive integer n. P* is an archimedean
subsemigroup of an ordered semigroup S. In 2004, Dutta and Adhikari [1]
introduced the concepts of the ordered I'-semigroups and the intra-regular or-
dered T'-semigroups and the concepts of the left ideals and the right ideals
in ordered I'-semigroups. The main results of their paper are the following:
They proved that for an ordered I'-semigroup M, the following statements are
equivalent:

(1) (AT'A] = A for each ideal A of M.
(2) (AT'B] = AN B for all ideals A and B of M.
(3) a € (MTaI'MT'aI' M] for all a € M.

Let M be an ordered I'-semigroup. The ideals of M are weakly prime if and
only if they form a chain and one of the three equivalent conditions (1), (2)
and (3) mentioned above holds in M. The ideals of M are prime if and only
if they form a chain and M is intra-regular. In 2006, Siripitukdet and Iampan
[11] characterized the relationship between the (ordered) s-prime ideals and
the (ordered) semilattice congruences in ordered I'-semigroups. They showed
that for an ordered I'-semigroup M, the congruence n on M is the intersec-
tion of oy for all s-prime ideals I of M and the congruence N on M is the
intersection of oy for all ordered s-prime ideals I of M. In 2007, Siripitukdet
and Tampan [12] introduced the concepts of the extensions of ordered s-prime
ideals, prime ideals, ordered s-semiprime ideals and semiprime ideals in ordered
I'-semigroups and characterize the relationship between the extensions of or-
dered ideals and some congruences in ordered I'-semigroups. They defined the
equivalence relations on an ordered I'-semigroup M as follows:

or = {(m,y)eMxM:z,yclorzydl},
O = {(2,9) €M x M i<zl >=<y, 13>},
N = {(z,y) € M x M : N(x)=N(y)}

and showed that if I is an ordered s-prime ideal of M, then ®; = o7 and
N C ®;. So the concept of prime is the really interested and important thing
about (ordered) semigroups and (ordered) I'-semigroups.

Our aim in this paper is fourfold.

(1) To generalize the definitions of the ordered prime ideal and the ordered
semiprime ideal in ordered I'-semigroups.

(2) To introduce the concept of the ordered m-prime ideals in ordered T'-
semigroups and to study the ordered n-prime ideals in ordered I'-semi-
groups.

(3) To generalize the ordered prime ideals in commutative ordered I'-semi-
groups.

(4) To characterize the relationship between the ordered n-prime ideals and
the ordered ideal extensions in commutative ordered I'-semigroups.
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To present the main theorems we first recall the definition of the I'-semigroup
which is important here.

Let T be any nonempty set. A nonempty set M is called a I'-semigroup
[7, 8, 9] if for all a,b,c € M and o, € T, we have (i) aab € M and (ii)
(aab)Bc = aa(bfBc). A T-semigroup M is called a commutative T'-semigroup if
ayb = bya for all a,b € M and v € T'. A nonempty subset K of a I'-semigroup
M is called a sub-I'-semigroup of M if ayb € K for all a,b € K and v € T

For examples of T'-semigroups, see [2, 10, 11, 12].

A partially ordered I'-semigroup M is called an ordered T'-semigroup (some
author called po-I'-semigroup) [5] if for any a,b,¢c € M and v € T',a < b implies
aye < bryc and eya < ¢yb. An ordered I'-semigroup M is called a commutative
ordered I'-semigroup if M is a commutative I'-semigroup. For any nonempty
subsets A and B of an ordered I'-semigroup M and any nonempty subset I
of T, let AT'B := {ayb : a € Ajb € B and v € T'}. If A = {a}, then
we also write {a}I"B as al'B, and similarly if B = {b} or I = {v}. A
nonempty subset I of an ordered I'-semigroup M is called an ordered ideal of
Mif MT'I CI,ITM CI and foralla €l and be M,b< a impliesb € I. An
ordered ideal I of an ordered I'-semigroup M is called an ordered prime ideal
of M if for any a,b € M,al'b C I implies a € I or b € I. Equivalently, for
any subsets A and B of M, AT'B C I implies A C [ or B C I. An ordered
ideal I of an ordered I'-semigroup M is called an ordered semiprime ideal of
M if for any a € M,al’a C I implies a € I. Equivalently, for any subset A
of M,ATA C I implies A C I. Let n be any integer such that n > 2. For
any subsets Ay, Ay, ..., A,—1 and A, of M and let i be an integer such that
2 <1i<n—1. We define the symbol as follows:

Afiy = ATAs---A, TA,,
Amy = ATAs- A TA T Ay Ay 1T Ay,
A\(n,n) = A1FA2-~-AH,2FA,L,1.

An ordered ideal I of an ordered I'-semigroup M is called an ordered n-prime
ideal of M if for any subsets A1,4,...,A,_1 and A,, of M, A1TAs---A,,_1T'A,
C I implies that there exists an integer i (1 <1 < n) such that

A(l;n)v A(Q;n)v s 7A(i—1;n)7 A(i—‘,—l;n)a A(i+2;n)v cee 7A(n;n) cr
An ordered ideal I of an ordered I'-semigroup M is called an ordered n-
semiprime ideal of M if for any subsets Ay, Az, ..., Ap—1 and A, of M with
Ay =A== A, AiTAy--- A, 1TA, C I implies A\(n;n) C I. Hence we
have the following statements for ordered I'-semigroups.
(1) Every ordered prime ideal is an ordered semiprime ideal.

(2) Every n-ordered prime ideal is an n-ordered semiprime ideal.
(3) The ordered prime ideals and the 2-ordered prime ideals coincide.
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(4) The ordered semiprime ideals and the 2-ordered semiprime ideals co-
incide.

For a subset H of an ordered I'-semigroup M, we denote (H]:={te M : t < h
for some h € H}. If H = {a}, then we also write ({a}] as (a]. We see that
H C (H], ((H]] = (H] and for any subsets A and B of M with A C B, we have
(4] C (B]. For an ordered ideal I of an ordered I'-semigroup M and a subset
Aof M. The set < A, I >:={x € M : ATz C I} is called the extension [12]
of I by A. If A = {a}, then we also write < {a},I > as < a, >.

We shall assume throughout this paper that M stands for a commutative
ordered I'-semigroup. Before the characterizations of the relationship between
the ordered m-prime ideals and ordered ideal extensions in M for the main
theorems, we give auxiliary results which are necessary in what follows.

Lemma 1.1 ([12]). Let I be an ordered ideal of M, AC M and v € T'. Then
we have the following statements.

(a) < A,I> is an ordered ideal of M.

b)) ICKAT>» C<KATA T > C < AyA, I >.

(¢c) IfACI, then < A, I >= M.

Lemma 1.2 ([12]). Let I be an ordered ideal of M and A C M. Then

<AI>=()<al>=<A\II>.
acA

2. Main theorems

In this section, we give the relationship between the ordered n-prime ideals
and ordered ideal extensions in ordered I'-semigroups.

The following theorem shows the important property that hold in every
integer n > 3, the ordered n-prime ideals of M are a generalization of ordered
(n — 1)-prime ideals.

Theorem 2.1. Every ordered (n — 1)-prime ideal of M is an ordered n-prime
ideal of M for all integers n > 3.

Proof. Assume that I is an ordered (n — 1)-prime ideal of M. Now, let
Al,AQ, ey An Q M be such that A1PA2 s Anfl].—‘An Q I. Let B1 = A1FA2
and B; = A4 foralli=2,3,...,n—1. Then BiI'By---B,,_oI'B,,_1 CI. By
hypothesis, it implies that there exists an integer ¢ (1 < i <mn — 1) such that

~ ~

B\(l;nfl)v B\(Z;nfl)a v ag(ifl;nfl)a E('Hrl;nfl)a B(i+2;n71)7 R B(nfl;nfl) crL
Case 1: E(lm_l) Z 1.
Then B(2;n—1)7 B(S;n—l)7 cey B(n—l;n—l) C I, so A(3;n)a A

(4m)> -
It follows from hypothesis that there exists an integer j (1 <jJ g
that

o~

A\(l;n—l)v 121\(2;11—1)’ . A(j 1;n—1) A (j+1;m—1)> ;{(j+2;n—1)7 ceey A\(n—l;n—l) cI
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~

since A1FA2 s An_QFAn_l = A(n,n) g I. Then

o~

AT Az - Ap 2T Ay 1 = A(l;nfl) Clor
AT Ay Ay 9T Ay = Ay 1y C 1.

Thus, since I is an ordered ideal of M,

Ay = AT Ay Ay T A, CTor Agyy = AT Az A, 1TA, CI.

o~

Hence A(l;n)a A(S;n)a A(4;n)a B A(n,n) CTlor A(Z;n)a A(B;n)7 s aA(n;n) clI.

Case 2: E(l;nq) clI.
Then there exists an integer j (2 < j < n — 1) such that

~

§(2;n71)a E(B;nfl)a SRR B\(jfl;nfl)a B(j+1;n71)a B\(j+2;n71)7 s 7§(n71;n71) CcrL
Thus

o~ -~

Ay Ainys - Ay AG+2im)> AG+3inys - Amim) S 1
Since A3TAy -+ A, 1T A, = By C 1,
A\(l;n) = AQFA?, ce An—ern g I and A\(2,n) = A1FA3FA4 e An—ern g 1.

Thus Ay, Ainys - - Ainys AG+2im), AG+3im), - Am) € 1
Therefore I is an ordered n-prime ideal of M. Hence we complete the proof of
the theorem. 0

The ordered n-prime ideals are not ordered (n — 1)-prime ideals in general
for ordered I'-semigroups and integers n > 3. We prove it by the following
examples:

Example 1 ([11]). Let M = {a,b,c,d} and T' = {y} with the multiplication
and the relation < on M defined by

[ b iftz,ye{a,b},
Y= { ¢ otherwise.
<:={(a,a),(b,b),(c,c),(d,d),(b,c),(b,d),(c,d)}.
Then M is an ordered T'-semigroup and {b,c} is an ordered ideal of M. We
can prove that {b,c} is a 3-prime ideal of M but not a 2-prime ideal of M since

{a}T{d} C {b,c} while {a} Z {b,c} and {d} Z {b,c}.

Example 2. Let S = {a,b,c,d} be the ordered semigroup defined by the
following multiplication and relation < on S as follows:

QUL O T *
[SUESTIRS IS S
[SHRSURES IS S o
QU O L0
[SUNSHESHESHESH
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<= {(Cl, CL), (b7 b)v (C7 C)’ (d’ d)a (CL, b)v (d7 b)v (d’ C)}
Let M = S and T' = {x}. Then M is an ordered I'-semigroup and {d} is an
ordered ideal of M. We can prove that {d} is a 3-prime ideal of M but not a
2-prime ideal of M since {b}T'{c} C {d} while b # d and ¢ # d.

Immediately from Theorem 2.1, we have Corollary 2.2.

Corollary 2.2. FEvery ordered prime ideal of M is an ordered n-prime ideal of
M for all integers n > 2.

Theorem 2.3. An ordered ideal I of M is an ordered n-prime ideal of M if
and only if any extension of I is an ordered (n — 1)-prime ideal of M for all
integers n > 3.

Proof. Assume that I is an ordered n-prime ideal of M. By Lemma 1.1 (a), we
have that for any subset A of M, < A, I > is an ordered ideal of M. For any
subset B of M, let Ay, As,..., An_1 € M be such that AT’ Ay--- A, _oT'A,_4
Q < B, I >. Then BFAlFAQ cee An,QFAn,1 Q I. Let Bl = B and 31 = Ai,1
for all « = 2,3,...,n. Then BiI'By---B,,_1I'B,, C I. Since I is an ordered
n-prime ideal of M, there exists an integer ¢ (1 < i < n) such that

B(l;n)7 B(Q;n)y R B(ifl;n)7 B(i+1;n)7 B(i+2;n)7 v aB(n;n) crL
Thus there exists an integer j (2 < j < n) such that

Bainys Binys - -+ Bi—1:n)s B(i+1m), Bj2im)s -+ - Bnm) € 1.
This implies that there exists an integer k = j — 1 (1 < k < n — 1) such that

BFA\(l;n—l)v BFA\(?;n—l)a ceey BFA\(k—l;n—l)a BFA\(]C-”-I;TL—l)?
BFA(k+2;n71)a R BFA(nfl;nfl) clI.
Hence
A(l/;\n—l), A(2;n—1)7 S A(k—l;n—1)> A(k‘+1;n—1)7
A(k+2;n71)a cee aA(nfl;nfl) C<KB,I>.

Therefore < B, > is an ordered (n — 1)-prime ideal of M.

Conversely, assume that any extension of I is an ordered (n — 1)-prime
ideal of M. Let Ay, As,..., A, € M be such that A,T'A>--- A, _TA, C I.
Then we get A1T'Ay--- A, osTA, 1 C <« A,,I >. By hypothesis, it implies
that there exists an integer ¢ (1 < i < n — 1) such that

A\(l;nfl)a ;{(2;7171)7 v 7;{(1'71;7171)7 ;{(i+1;n71)7
A(H—Q;n—l)v cee 7A(n—1;71,—1) CK Anv I>.

We consider the following (n — 1) cases. Let g(im_l) ¢ < Ap,I>. Then

A\(/l\;nfl)a ;{(2;7171)7/; .- 7;{(1'71;7171)7 ;{(i+1;n71)7
A(i+2;n—1)7 cee 7A(n—1;n—1) CK An7 I>.
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Thus

~

A\(l;n)y A(?;n)7 R A\(ifl;n)a A\(i+1;n)a A\(i+2;n)7 EER A\(nfl;n) crL

We now only prove that A\(im) C1lor A\(nm) C I. For any integer j (1 <j <mn)
and j # i, we have

AT Ay Aj TAj T A g Ay 1TA, C < Aj, 1>

Let By = Ay for all k = 1,2,...,j — 1 and By = Agqq for all k = j,j +
1,...,n—1. Then

BerQ s Bn,QI‘Bn—l K Aj, I>.

Hence there exists an integer k (1 < k < n — 1) such that

~

B(l;n—l)u B(2;n—1)7 SRR B(k—l;n—1)7 B(k+1;n—1)7
B(k+2;n—1)7 e 7B(n—1;n—1) g < Aja I>.

This implies that there exists an integer [ (1 <1 < n) and [ # j (assume [ < j)
such that

A(l;n)7 A(2;n)7 R A(li};n)a A(l+1;n) aAA(lJrQ;n)) cey A(jfl;n)7 A(j+1;n)7
AGiamys - Awmy € 1.

-~

Since j # i, we get g(i;n) Clor E(nm) C I. Hence
A(l;n)v A(Q;n)v ceey A(n—Q;n)a A(n—l;n) cI
or
A\(l;n), A\(Q;n)a cee ,A(i—l;n)a A(i+1;n)v A\(i+2;n)v s aA\(n;n) crL

Therefore I is an ordered n-prime ideal of M. Hence the proof of the theorem
is completed. O

Theorem 2.4. If a € (MTa] for all a € M, then the ordered n-prime ideals
and the ordered (n — 1)-prime ideals of M coincide for all integers n > 3.

Proof. Let I be an ordered n-prime ideal of M. By Theorem 2.3, < M, I > is
an ordered (n — 1)-prime ideal of M. Let a € < M,I >. Then a < mya € T
for some m € M and vy € I', soa € I. Thus < M,I > C I. By Lemma 1.1
(b), < M,I >=1. By Lemma 2.1, the proof is completed. |

Theorem 2.5. If I is an ordered semiprime ideal of M, then I = M, I >.

Proof. By Lemma 1.1 (b), I C <« M,I >. Let a € < M,I >. Then
al’a € MTa C I. Since I is an ordered semiprime ideal of M, a € I. Hence
< M,I > C 1, so we conclude that I =< M, I >. O
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Theorem 2.6. For any integer n > 3, let I be an ordered semiprime ideal and
an ordered n-prime ideal of M and let

P ={T:T is an ordered (n — 1)-prime ideal of M and I C T}.

Then I = ﬂ T.
TeP

Proof. Clearly, I C ﬂ T. By Lemma 1.2 and Theorem 2.5,
TeP

I=() <z,I>.
xeM

By Lemma 1.1 (b) and Theorem 2.3, I C < z,I > is an ordered (n — 1)-
prime ideal of M for all x € M. Thus <« z,I > € P for all x € M. Hence

ﬂ T C ﬂ < x,I >= 1. Therefore I = ﬂ T. Hence the theorem is now

TeP reM TeP
completed. (I
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