# ON THE ORDERED $n$-PRIME IDEALS IN ORDERED $\Gamma$-SEMIGROUPS 

Manoj Siripitukdet and Aiyared Iampan


#### Abstract

The motivation mainly comes from the conditions of the (ordered) ideals to be prime or semiprime that are of importance and interest in (ordered) semigroups and in (ordered) $\Gamma$-semigroups. In 1981, Sen [8] has introduced the concept of the $\Gamma$-semigroups. We can see that any semigroup can be considered as a $\Gamma$-semigroup. The concept of ordered ideal extensions in ordered $\Gamma$-semigroups was introduced in 2007 by Siripitukdet and Iampan [12]. Our purpose in this paper is to introduce the concepts of the ordered $n$-prime ideals and the ordered $n$-semiprime ideals in ordered $\Gamma$-semigroups and to characterize the relationship between the ordered $n$-prime ideals and the ordered ideal extensions in ordered $\Gamma$ semigroups.


## 1. Preliminaries

In 1981, the concept and notion of the $\Gamma$-semigroups was introduced by Sen [8]. In 1997, Kwon and Lee [5] introduced the concepts of the weakly prime ideals and the weakly semiprime ideals in ordered $\Gamma$-semigroups and gave some characterizations of the weakly prime ideals and the weakly semiprime ideals in ordered $\Gamma$-semigroups analogous to the characterizations of the weakly prime ideals and the weakly semiprime ideals in ordered semigroups considered by Kehayopulu [3]. In 1998, Kwon and Lee [4] introduced the ideals and the weakly prime ideals in ordered $\Gamma$-semigroups and gave some characterizations of the ideals and the weakly prime ideals in ordered $\Gamma$-semigroups analogous to the characterizations of the ideals and the weakly prime ideals in ordered semigroups considered by Kehayopulu [3]. In 1999, Lee and Kwon [6] gave two new characterizations of the weakly prime ideals in ordered semigroups. They proved two theorems as follow: Let $a$ be a quasi-completely regular element of an ordered semigroup $S$. If there exists an ideal not containing $a$, then there exists a weakly prime ideal not containing $a$. Let $P^{*}$ be the intersection of weakly prime ideals of an ordered semigroup $S, a \in P^{*}$ and $I$ be any proper

[^0]ideal of $S$. Then $a^{n} \in I$ for some positive integer $n . P^{*}$ is an archimedean subsemigroup of an ordered semigroup $S$. In 2004, Dutta and Adhikari [1] introduced the concepts of the ordered $\Gamma$-semigroups and the intra-regular ordered $\Gamma$-semigroups and the concepts of the left ideals and the right ideals in ordered $\Gamma$-semigroups. The main results of their paper are the following: They proved that for an ordered $\Gamma$-semigroup $M$, the following statements are equivalent:
(1) $(A \Gamma A]=A$ for each ideal $A$ of $M$.
(2) $(A \Gamma B]=A \cap B$ for all ideals $A$ and $B$ of $M$.
(3) $a \in(M \Gamma a \Gamma M \Gamma a \Gamma M]$ for all $a \in M$.

Let $M$ be an ordered $\Gamma$-semigroup. The ideals of $M$ are weakly prime if and only if they form a chain and one of the three equivalent conditions (1), (2) and (3) mentioned above holds in $M$. The ideals of $M$ are prime if and only if they form a chain and $M$ is intra-regular. In 2006, Siripitukdet and Iampan [11] characterized the relationship between the (ordered) $s$-prime ideals and the (ordered) semilattice congruences in ordered $\Gamma$-semigroups. They showed that for an ordered $\Gamma$-semigroup $M$, the congruence $n$ on $M$ is the intersection of $\sigma_{I}$ for all $s$-prime ideals $I$ of $M$ and the congruence $\mathcal{N}$ on $M$ is the intersection of $\sigma_{I}$ for all ordered $s$-prime ideals $I$ of $M$. In 2007, Siripitukdet and Iampan [12] introduced the concepts of the extensions of ordered $s$-prime ideals, prime ideals, ordered $s$-semiprime ideals and semiprime ideals in ordered $\Gamma$-semigroups and characterize the relationship between the extensions of ordered ideals and some congruences in ordered $\Gamma$-semigroups. They defined the equivalence relations on an ordered $\Gamma$-semigroup $M$ as follows:

$$
\begin{aligned}
\sigma_{I} & :=\{(x, y) \in M \times M: x, y \in I \text { or } x, y \notin I\} \\
\Phi_{I} & :=\{(x, y) \in M \times M: \ll x, I \gg=\ll y, I \gg\} \\
\mathcal{N} & :=\{(x, y) \in M \times M: N(x)=N(y)\}
\end{aligned}
$$

and showed that if $I$ is an ordered $s$-prime ideal of $M$, then $\Phi_{I}=\sigma_{I}$ and $\mathcal{N} \subseteq \Phi_{I}$. So the concept of prime is the really interested and important thing about (ordered) semigroups and (ordered) $\Gamma$-semigroups.

Our aim in this paper is fourfold.
(1) To generalize the definitions of the ordered prime ideal and the ordered semiprime ideal in ordered $\Gamma$-semigroups.
(2) To introduce the concept of the ordered $n$-prime ideals in ordered $\Gamma$ semigroups and to study the ordered $n$-prime ideals in ordered $\Gamma$-semigroups.
(3) To generalize the ordered prime ideals in commutative ordered $\Gamma$-semigroups.
(4) To characterize the relationship between the ordered $n$-prime ideals and the ordered ideal extensions in commutative ordered $\Gamma$-semigroups.

To present the main theorems we first recall the definition of the $\Gamma$-semigroup which is important here.

Let $\Gamma$ be any nonempty set. A nonempty set $M$ is called a $\Gamma$-semigroup [7,8, 9] if for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, we have (i) $a \alpha b \in M$ and (ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$. A $\Gamma$-semigroup $M$ is called a commutative $\Gamma$-semigroup if $a \gamma b=b \gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$. A nonempty subset $K$ of a $\Gamma$-semigroup $M$ is called a sub- $\Gamma$-semigroup of $M$ if $a \gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

For examples of $\Gamma$-semigroups, see $[2,10,11,12]$.
A partially ordered $\Gamma$-semigroup $M$ is called an ordered $\Gamma$-semigroup (some author called po- $\Gamma$-semigroup) [5] if for any $a, b, c \in M$ and $\gamma \in \Gamma, a \leq b$ implies $a \gamma c \leq b \gamma c$ and $c \gamma a \leq c \gamma b$. An ordered $\Gamma$-semigroup $M$ is called a commutative ordered $\Gamma$-semigroup if $M$ is a commutative $\Gamma$-semigroup. For any nonempty subsets $A$ and $B$ of an ordered $\Gamma$-semigroup $M$ and any nonempty subset $\Gamma^{\prime}$ of $\Gamma$, let $A \Gamma^{\prime} B:=\left\{a \gamma b: a \in A, b \in B\right.$ and $\left.\gamma \in \Gamma^{\prime}\right\}$. If $A=\{a\}$, then we also write $\{a\} \Gamma^{\prime} B$ as $a \Gamma^{\prime} B$, and similarly if $B=\{b\}$ or $\Gamma^{\prime}=\{\gamma\}$. A nonempty subset $I$ of an ordered $\Gamma$-semigroup $M$ is called an ordered ideal of $M$ if $M \Gamma I \subseteq I, I \Gamma M \subseteq I$ and for all $a \in I$ and $b \in M, b \leq a$ implies $b \in I$. An ordered ideal $I$ of an ordered $\Gamma$-semigroup $M$ is called an ordered prime ideal of $M$ if for any $a, b \in M, a \Gamma b \subseteq I$ implies $a \in I$ or $b \in I$. Equivalently, for any subsets $A$ and $B$ of $M, A \Gamma B \subseteq I$ implies $A \subseteq I$ or $B \subseteq I$. An ordered ideal $I$ of an ordered $\Gamma$-semigroup $M$ is called an ordered semiprime ideal of $M$ if for any $a \in M, a \Gamma a \subseteq I$ implies $a \in I$. Equivalently, for any subset $A$ of $M, A \Gamma A \subseteq I$ implies $A \subseteq I$. Let $n$ be any integer such that $n \geq 2$. For any subsets $A_{1}, A_{2}, \ldots, A_{n-1}$ and $A_{n}$ of $M$ and let $i$ be an integer such that $2 \leq i \leq n-1$. We define the symbol as follows:

$$
\begin{aligned}
\widehat{A}_{(1 ; n)} & :=A_{2} \Gamma A_{3} \cdots A_{n-1} \Gamma A_{n}, \\
\widehat{A}_{(i ; n)} & :=A_{1} \Gamma A_{2} \cdots A_{i-1} \Gamma A_{i+1} \Gamma A_{i+2} \cdots A_{n-1} \Gamma A_{n}, \\
\widehat{A}_{(n ; n)} & :=A_{1} \Gamma A_{2} \cdots A_{n-2} \Gamma A_{n-1} .
\end{aligned}
$$

An ordered ideal $I$ of an ordered $\Gamma$-semigroup $M$ is called an ordered $n$-prime ideal of $M$ if for any subsets $A_{1}, A_{2}, \ldots, A_{n-1}$ and $A_{n}$ of $M, A_{1} \Gamma A_{2} \cdots A_{n-1} \Gamma A_{n}$ $\subseteq I$ implies that there exists an integer $i(1 \leq i \leq n)$ such that

$$
\widehat{A}_{(1 ; n)}, \widehat{A}_{(2 ; n)}, \ldots, \widehat{A}_{(i-1 ; n)}, \widehat{A}_{(i+1 ; n)}, \widehat{A}_{(i+2 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I
$$

An ordered ideal $I$ of an ordered $\Gamma$-semigroup $M$ is called an ordered $n$ semiprime ideal of $M$ if for any subsets $A_{1}, A_{2}, \ldots, A_{n-1}$ and $A_{n}$ of $M$ with $A_{1}=A_{2}=\cdots=A_{n}, A_{1} \Gamma A_{2} \cdots A_{n-1} \Gamma A_{n} \subseteq I$ implies $\widehat{A}_{(n ; n)} \subseteq I$. Hence we have the following statements for ordered $\Gamma$-semigroups.
(1) Every ordered prime ideal is an ordered semiprime ideal.
(2) Every $n$-ordered prime ideal is an $n$-ordered semiprime ideal.
(3) The ordered prime ideals and the 2-ordered prime ideals coincide.
(4) The ordered semiprime ideals and the 2-ordered semiprime ideals coincide.
For a subset $H$ of an ordered $\Gamma$-semigroup $M$, we denote $(H]:=\{t \in M: t \leq h$ for some $h \in H\}$. If $H=\{a\}$, then we also write $(\{a\}]$ as (a]. We see that $H \subseteq(H],((H]]=(H]$ and for any subsets $A$ and $B$ of $M$ with $A \subseteq B$, we have $(A] \subseteq(B]$. For an ordered ideal $I$ of an ordered $\Gamma$-semigroup $M$ and a subset $A$ of $M$. The set $\ll A, I \gg:=\{x \in M: A \Gamma x \subseteq I\}$ is called the extension [12] of $I$ by $A$. If $A=\{a\}$, then we also write $\ll\{a\}, I \gg$ as $\ll a, I \gg$.

We shall assume throughout this paper that $M$ stands for a commutative ordered $\Gamma$-semigroup. Before the characterizations of the relationship between the ordered $n$-prime ideals and ordered ideal extensions in $M$ for the main theorems, we give auxiliary results which are necessary in what follows.

Lemma 1.1 ([12]). Let I be an ordered ideal of $M, A \subseteq M$ and $\gamma \in \Gamma$. Then we have the following statements.
(a) $<A, I \gg$ is an ordered ideal of $M$.
(b) $I \subseteq \ll A, I \gg \lll A \Gamma A, I \gg \subseteq<A \gamma A, I \gg$.
(c) If $A \subseteq I$, then $\ll A, I \gg=M$.

Lemma 1.2 ([12]). Let $I$ be an ordered ideal of $M$ and $A \subseteq M$. Then

$$
\ll A, I \gg=\bigcap_{a \in A} \ll a, I \gg=\ll A \backslash I, I \gg .
$$

## 2. Main theorems

In this section, we give the relationship between the ordered $n$-prime ideals and ordered ideal extensions in ordered $\Gamma$-semigroups.

The following theorem shows the important property that hold in every integer $n \geq 3$, the ordered $n$-prime ideals of $M$ are a generalization of ordered ( $n-1$ )-prime ideals.

Theorem 2.1. Every ordered ( $n-1$ )-prime ideal of $M$ is an ordered n-prime ideal of $M$ for all integers $n \geq 3$.

Proof. Assume that $I$ is an ordered $(n-1)$-prime ideal of $M$. Now, let $A_{1}, A_{2}, \ldots, A_{n} \subseteq M$ be such that $A_{1} \Gamma A_{2} \cdots A_{n-1} \Gamma A_{n} \subseteq I$. Let $B_{1}=A_{1} \Gamma A_{2}$ and $B_{i}=A_{i+1}$ for all $i=2,3, \ldots, n-1$. Then $B_{1} \Gamma B_{2} \cdots B_{n-2} \Gamma B_{n-1} \subseteq I$. By hypothesis, it implies that there exists an integer $i(1 \leq i \leq n-1)$ such that

$$
\widehat{B}_{(1 ; n-1)}, \widehat{B}_{(2 ; n-1)}, \ldots, \widehat{B}_{(i-1 ; n-1)}, \widehat{B}_{(i+1 ; n-1)}, \widehat{B}_{(i+2 ; n-1)}, \ldots, \widehat{B}_{(n-1 ; n-1)} \subseteq I
$$

Case 1: $\widehat{B}_{(1 ; n-1)} \nsubseteq I$.
Then $\widehat{B}_{(2 ; n-1)}, \widehat{B}_{(3 ; n-1)}, \ldots, \widehat{B}_{(n-1 ; n-1)} \subseteq I$, so $\widehat{A}_{(3 ; n)}, \widehat{A}_{(4 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I$. It follows from hypothesis that there exists an integer $j(1 \leq j \leq n-1)$ such that

$$
\widehat{A}_{(1 ; n-1)}, \widehat{A}_{(2 ; n-1)}, \ldots, \widehat{A}_{(j-1 ; n-1)}, \widehat{A}_{(j+1 ; n-1)}, \widehat{A}_{(j+2 ; n-1)}, \ldots, \widehat{A}_{(n-1 ; n-1)} \subseteq I .
$$

since $A_{1} \Gamma A_{2} \cdots A_{n-2} \Gamma A_{n-1}=\widehat{A}_{(n ; n)} \subseteq I$. Then

$$
\begin{gathered}
A_{2} \Gamma A_{3} \cdots A_{n-2} \Gamma A_{n-1}=\widehat{A}_{(1 ; n-1)} \subseteq I \text { or } \\
A_{1} \Gamma A_{3} \cdots A_{n-2} \Gamma A_{n-1}=\widehat{A}_{(2 ; n-1)} \subseteq I .
\end{gathered}
$$

Thus, since $I$ is an ordered ideal of $M$,

$$
\widehat{A}_{(1 ; n)}=A_{2} \Gamma A_{3} \cdots A_{n-1} \Gamma A_{n} \subseteq I \text { or } \widehat{A}_{(2 ; n)}=A_{1} \Gamma A_{3} \cdots A_{n-1} \Gamma A_{n} \subseteq I
$$

Hence $\widehat{A}_{(1 ; n)}, \widehat{A}_{(3 ; n)}, \widehat{A}_{(4 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I$ or $\widehat{A}_{(2 ; n)}, \widehat{A}_{(3 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I$.
Case 2: $\widehat{B}_{(1 ; n-1)} \subseteq I$.
Then there exists an integer $j(2 \leq j \leq n-1)$ such that

$$
\widehat{B}_{(2 ; n-1)}, \widehat{B}_{(3 ; n-1)}, \ldots, \widehat{B}_{(j-1 ; n-1)}, \widehat{B}_{(j+1 ; n-1)}, \widehat{B}_{(j+2 ; n-1)}, \ldots, \widehat{B}_{(n-1 ; n-1)} \subseteq I
$$

Thus

$$
\widehat{A}_{(3 ; n)}, \widehat{A}_{(4 ; n)}, \ldots, \widehat{A}_{(j ; n)}, \widehat{A}_{(j+2 ; n)}, \widehat{A}_{(j+3 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I
$$

Since $A_{3} \Gamma A_{4} \cdots A_{n-1} \Gamma A_{n}=\widehat{B}_{(1 ; n-1)} \subseteq I$,

$$
\widehat{A}_{(1 ; n)}=A_{2} \Gamma A_{3} \cdots A_{n-1} \Gamma A_{n} \subseteq I \text { and } \widehat{A}_{(2, n)}=A_{1} \Gamma A_{3} \Gamma A_{4} \cdots A_{n-1} \Gamma A_{n} \subseteq I
$$

Thus $\widehat{A}_{(1 ; n)}, \widehat{A}_{(2 ; n)}, \ldots, \widehat{A}_{(j ; n)}, \widehat{A}_{(j+2 ; n)}, \widehat{A}_{(j+3 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I$.
Therefore $I$ is an ordered $n$-prime ideal of $M$. Hence we complete the proof of the theorem.

The ordered $n$-prime ideals are not ordered $(n-1)$-prime ideals in general for ordered $\Gamma$-semigroups and integers $n \geq 3$. We prove it by the following examples:

Example 1 ([11]). Let $M=\{a, b, c, d\}$ and $\Gamma=\{\gamma\}$ with the multiplication and the relation $\leq$ on $M$ defined by

$$
\begin{gathered}
x \gamma y=\left\{\begin{array}{cc}
b & \text { if } x, y \in\{a, b\} \\
c & \text { otherwise }
\end{array}\right. \\
\leq:=\{(a, a),(b, b),(c, c),(d, d),(b, c),(b, d),(c, d)\}
\end{gathered}
$$

Then $M$ is an ordered $\Gamma$-semigroup and $\{b, c\}$ is an ordered ideal of $M$. We can prove that $\{b, c\}$ is a 3-prime ideal of $M$ but not a 2-prime ideal of $M$ since $\{a\} \Gamma\{d\} \subseteq\{b, c\}$ while $\{a\} \nsubseteq\{b, c\}$ and $\{d\} \nsubseteq\{b, c\}$.

Example 2. Let $S=\{a, b, c, d\}$ be the ordered semigroup defined by the following multiplication and relation $\leq$ on $S$ as follows:

| $*$ | $a$ | $b$ | $c$ | $d$ |
| :--- | :--- | :--- | :--- | :--- |
| $a$ | $b$ | $b$ | $d$ | $d$ |
| $b$ | $b$ | $b$ | $d$ | $d$ |
| $c$ | $d$ | $d$ | $c$ | $d$ |
| $d$ | $d$ | $d$ | $d$ | $d$ |

$$
\leq:=\{(a, a),(b, b),(c, c),(d, d),(a, b),(d, b),(d, c)\}
$$

Let $M=S$ and $\Gamma=\{*\}$. Then $M$ is an ordered $\Gamma$-semigroup and $\{d\}$ is an ordered ideal of $M$. We can prove that $\{d\}$ is a 3-prime ideal of $M$ but not a 2-prime ideal of $M$ since $\{b\} \Gamma\{c\} \subseteq\{d\}$ while $b \neq d$ and $c \neq d$.

Immediately from Theorem 2.1, we have Corollary 2.2.
Corollary 2.2. Every ordered prime ideal of $M$ is an ordered n-prime ideal of $M$ for all integers $n \geq 2$.
Theorem 2.3. An ordered ideal $I$ of $M$ is an ordered $n$-prime ideal of $M$ if and only if any extension of $I$ is an ordered $(n-1)$-prime ideal of $M$ for all integers $n \geq 3$.
Proof. Assume that $I$ is an ordered $n$-prime ideal of $M$. By Lemma 1.1 (a), we have that for any subset $A$ of $M, \ll A, I \gg$ is an ordered ideal of $M$. For any subset $B$ of $M$, let $A_{1}, A_{2}, \ldots, A_{n-1} \subseteq M$ be such that $A_{1} \Gamma A_{2} \cdots A_{n-2} \Gamma A_{n-1}$ $\subseteq \ll B, I \gg$. Then $B \Gamma A_{1} \Gamma A_{2} \cdots A_{n-2} \Gamma A_{n-1} \subseteq I$. Let $B_{1}=B$ and $B_{i}=A_{i-1}$ for all $i=2,3, \ldots, n$. Then $B_{1} \Gamma B_{2} \cdots B_{n-1} \Gamma B_{n} \subseteq I$. Since $I$ is an ordered $n$-prime ideal of $M$, there exists an integer $i(1 \leq i \leq n)$ such that

$$
\widehat{B}_{(1 ; n)}, \widehat{B}_{(2 ; n)}, \ldots, \widehat{B}_{(i-1 ; n)}, \widehat{B}_{(i+1 ; n)}, \widehat{B}_{(i+2 ; n)}, \ldots, \widehat{B}_{(n ; n)} \subseteq I
$$

Thus there exists an integer $j(2 \leq j \leq n)$ such that

$$
\widehat{B}_{(2 ; n)}, \widehat{B}_{(3 ; n)}, \ldots, \widehat{B}_{(j-1 ; n)}, \widehat{B}_{(j+1 ; n)}, \widehat{B}_{(j+2 ; n)}, \ldots, \widehat{B}_{(n ; n)} \subseteq I
$$

This implies that there exists an integer $k=j-1(1 \leq k \leq n-1)$ such that

$$
\begin{gathered}
B \Gamma \widehat{A}_{(1 ; n-1)}, B \Gamma \widehat{A}_{(2 ; n-1)}, \ldots, B \Gamma \widehat{A}_{(k-1 ; n-1)}, B \Gamma \widehat{A}_{(k+1 ; n-1)} \\
B \Gamma \widehat{A}_{(k+2 ; n-1)}, \ldots, B \Gamma \widehat{A}_{(n-1 ; n-1)} \subseteq I
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \widehat{A}_{(1 ; n-1)}, \widehat{A}_{(2 ; n-1)}, \ldots, \widehat{A}_{(k-1 ; n-1)}, \widehat{A}_{(k+1 ; n-1)} \\
& \quad \widehat{A}_{(k+2 ; n-1)}, \ldots, \widehat{A}_{(n-1 ; n-1)} \subseteq \ll B, I \gg
\end{aligned}
$$

Therefore $\ll B, I \gg$ is an ordered ( $n-1$ )-prime ideal of $M$.
Conversely, assume that any extension of $I$ is an ordered $(n-1)$-prime ideal of $M$. Let $A_{1}, A_{2}, \ldots, A_{n} \subseteq M$ be such that $A_{1} \Gamma A_{2} \cdots A_{n-1} \Gamma A_{n} \subseteq I$. Then we get $A_{1} \Gamma A_{2} \cdots A_{n-2} \Gamma A_{n-1} \subseteq \ll A_{n}, I \gg$. By hypothesis, it implies that there exists an integer $i(1 \leq i \leq n-1)$ such that

$$
\begin{aligned}
& \widehat{A}_{(1 ; n-1)}, \widehat{A}_{(2 ; n-1)}, \ldots, \widehat{A}_{(i-1 ; n-1)}, \widehat{A}_{(i+1 ; n-1)} \\
& \quad \widehat{A}_{(i+2 ; n-1)}, \ldots, \widehat{A}_{(n-1 ; n-1)} \subseteq \ll A_{n}, I \gg
\end{aligned}
$$

We consider the following $(n-1)$ cases. Let $\widehat{A}_{(i ; n-1)} \nsubseteq \ll A_{n}, I \gg$. Then

$$
\begin{aligned}
& \widehat{A}_{(1 ; n-1)}, \widehat{A}_{(2 ; n-1)}, \ldots, \widehat{A}_{(i-1 ; n-1)}, \widehat{A}_{(i+1 ; n-1)} \\
& \quad \widehat{A}_{(i+2 ; n-1)}, \ldots, \widehat{A}_{(n-1 ; n-1)} \subseteq \ll A_{n}, I \gg
\end{aligned}
$$

Thus

$$
\widehat{A}_{(1 ; n)}, \widehat{A}_{(2 ; n)}, \ldots, \widehat{A}_{(i-1 ; n)}, \widehat{A}_{(i+1 ; n)}, \widehat{A}_{(i+2 ; n)}, \ldots, \widehat{A}_{(n-1 ; n)} \subseteq I
$$

We now only prove that $\widehat{A}_{(i ; n)} \subseteq I$ or $\widehat{A}_{(n ; n)} \subseteq I$. For any integer $j(1 \leq j \leq n)$ and $j \neq i$, we have

$$
A_{1} \Gamma A_{2} \ldots A_{j-1} \Gamma A_{j+1} \Gamma A_{j+2} \cdots A_{n-1} \Gamma A_{n} \subseteq \ll A_{j}, I \gg
$$

Let $B_{k}=A_{k}$ for all $k=1,2, \ldots, j-1$ and $B_{k}=A_{k+1}$ for all $k=j, j+$ $1, \ldots, n-1$. Then

$$
B_{1} \Gamma B_{2} \cdots B_{n-2} \Gamma B_{n-1} \subseteq \ll A_{j}, I \gg
$$

Hence there exists an integer $k(1 \leq k \leq n-1)$ such that

$$
\begin{aligned}
& \widehat{B}_{(1 ; n-1)}, \widehat{B}_{(2 ; n-1)}, \ldots, \widehat{B}_{(k-1 ; n-1)}, \widehat{B}_{(k+1 ; n-1)} \\
& \quad \widehat{B}_{(k+2 ; n-1)}, \ldots, \widehat{B}_{(n-1 ; n-1)} \subseteq \ll A_{j}, I \gg
\end{aligned}
$$

This implies that there exists an integer $l(1 \leq l \leq n)$ and $l \neq j$ (assume $l<j$ ) such that

$$
\begin{gathered}
\widehat{A}_{(1 ; n)}, \widehat{A}_{(2 ; n)}, \ldots, \widehat{A}_{(l-1 ; n)}, \widehat{A}_{(l+1 ; n)}, \widehat{A}_{(l+2 ; n)}, \ldots, \widehat{A}_{(j-1 ; n)}, \widehat{A}_{(j+1 ; n)}, \\
\widehat{A}_{(j+2 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I .
\end{gathered}
$$

Since $j \neq i$, we get $\widehat{A}_{(i ; n)} \subseteq I$ or $\widehat{A}_{(n ; n)} \subseteq I$. Hence

$$
\widehat{A}_{(1 ; n)}, \widehat{A}_{(2 ; n)}, \ldots, \widehat{A}_{(n-2 ; n)}, \widehat{A}_{(n-1 ; n)} \subseteq I
$$

or

$$
\widehat{A}_{(1 ; n)}, \widehat{A}_{(2 ; n)}, \ldots, \widehat{A}_{(i-1 ; n)}, \widehat{A}_{(i+1 ; n)}, \widehat{A}_{(i+2 ; n)}, \ldots, \widehat{A}_{(n ; n)} \subseteq I
$$

Therefore $I$ is an ordered $n$-prime ideal of $M$. Hence the proof of the theorem is completed.

Theorem 2.4. If $a \in(M \Gamma a]$ for all $a \in M$, then the ordered $n$-prime ideals and the ordered $(n-1)$-prime ideals of $M$ coincide for all integers $n \geq 3$.

Proof. Let $I$ be an ordered $n$-prime ideal of $M$. By Theorem $2.3, \ll M, I \gg$ is an ordered $(n-1)$-prime ideal of $M$. Let $a \in \ll M, I \gg$. Then $a \leq m \gamma a \in I$ for some $m \in M$ and $\gamma \in \Gamma$, so $a \in I$. Thus $\ll M, I \gg I$. By Lemma 1.1 (b), $\ll M, I \gg=I$. By Lemma 2.1, the proof is completed.

Theorem 2.5. If $I$ is an ordered semiprime ideal of $M$, then $I=\ll M, I \gg$.
Proof. By Lemma $1.1(b), I \subseteq \ll M, I \gg$. Let $a \in \ll M, I \gg$. Then $a \Gamma a \subseteq M \Gamma a \subseteq I$. Since $I$ is an ordered semiprime ideal of $M, a \in I$. Hence $\ll M, I \gg \subseteq$, so we conclude that $I=\ll M, I \gg$.

Theorem 2.6. For any integer $n \geq 3$, let $I$ be an ordered semiprime ideal and an ordered $n$-prime ideal of $M$ and let

$$
\mathcal{P}=\{T: T \text { is an ordered }(n-1) \text {-prime ideal of } M \text { and } I \subseteq T\} .
$$

Then $I=\bigcap_{T \in \mathcal{P}} T$.
Proof. Clearly, $I \subseteq \bigcap_{T \in \mathcal{P}} T$. By Lemma 1.2 and Theorem 2.5,

$$
I=\bigcap_{x \in M} \ll x, I \gg
$$

By Lemma 1.1 (b) and Theorem 2.3, $I \subseteq \ll x, I \gg$ is an ordered $(n-1)$ prime ideal of $M$ for all $x \in M$. Thus $\ll x, I \gg \in \mathcal{P}$ for all $x \in M$. Hence $\bigcap_{T \in \mathcal{P}} T \subseteq \bigcap_{x \in M} \ll x, I \gg=I$. Therefore $I=\bigcap_{T \in \mathcal{P}} T$. Hence the theorem is now completed.

Acknowledgement. The authors are very indebted to the referee, whose valuable comments and suggestions considerably increased the quality of this paper.

## References

[1] T. K. Dutta and N. C. Adhikari, On partially ordered $\Gamma$-semigroups, Southeast Asian Bulletin of Mathematics 28 (2004), 1021-1028.
[2] A. Iampan and M. Siripitukdet, On minimal and maximal ordered left ideals in po- $\Gamma$ semigroups, Thai Journal of Mathematics 2 (2004), 275-282.
[3] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Mathematica Japonica 35 (1990), 1051-1056.
[4] Y. I. Kwon and S. K. Lee, The weakly prime ideals of ordered- $\Gamma$-semigroups, Communications of the Korean Mathematical Society 13 (1998), 251-256.
[5] _, The weakly semi-prime ideals of po-Г-semigroups, Kangweon-Kyungki Mathematical Journal 5 (1997), 135-139.
[6] S. K. Lee and Y. I. Kwon, A note on weakly prime ideals of ordered semigroups, Mathematica Japonica 50 (1999), 243-246.
[7] N. K. Saha, On Г-semigroup II, Bulletin of the Calcutta Mathematical Society 79 (1987), 331-335.
[8] M. K. Sen, On $\Gamma$-semigroups, Proceedings of the International Conference on Algebra and it's Applications, Decker Publication, New York 301.
[9] M. K. Sen and N. K. Saha, On Г-semigroup I, Bulletin of the Calcutta Mathematical Society 78 (1986), 180-186.
[10] , Orthodox $\Gamma$-semigroups, International Journal of Mathematics and Mathematical Sciences 13 (1990), 527-534.
[11] M. Siripitukdet and A. Iampan, On the least (ordered) semilattice congruences in ordered $\Gamma$-semigroups, Thai Journal of Mathematics 4 (2006), 403-415.
[12] , On ordered ideal extensions in po-Г-semigroups, Southeast Asian Bulletin of Mathematics, (to appear).

Manou Siripitukdet
Department of Mathematics, Faculty of Science
Naresuan University
Phitsanulok 65000, Thailand
E-mail address: manojs@nu.ac.th
Aiyared Iampan
Department of Mathematics, Faculty of Science
Naresuan University
Phitsanulok 65000, Thailand
E-mail address: aiyaredi@nu.ac.th


[^0]:    Received September 14, 2007.
    2000 Mathematics Subject Classification. 20M99, 06F99, 06B10.
    Key words and phrases. (ordered) semigroup, (ordered) $\Gamma$-semigroup, (ordered) ideal, ordered ideal extension, (ordered) prime ideal, (ordered) semiprime ideal, ordered $n$-prime ideal and ordered $n$-semiprime ideal.

