• Title/Summary/Keyword: semiprime

Search Result 126, Processing Time 0.019 seconds

SOME RESULTS ON CENTRALIZERS OF SEMIPRIME RINGS

  • ANSARI, ABU ZAID
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.99-105
    • /
    • 2022
  • The objective of this research paper is to prove that an additive mapping T from a semiprime ring R to itself will be centralizer having a suitable torsion restriction on R if it satisfy any one of the following algebraic equations (a) 2T(xnynxn) = T(xn)ynxn + xnynT(xn) (b) 3T(xnynxn) = T(xn)ynxn+xnT(yn)xn+xnynT(xn) for every x, y ∈ R. Further, few extensions of these results are also presented in the framework of *-ring.

SEMIPRIME RINGS WITH INVOLUTION AND CENTRALIZERS

  • ANSARI, ABU ZAID;SHUJAT, FAIZA
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.709-717
    • /
    • 2022
  • The objective of this research is to prove that an additive mapping T : R → R is a left as well as right centralizer on R if it satisfies any one of the following identities: (i) T(xnyn + ynxn) = T(xn)yn + ynT(xn) (ii) 2T(xnyn) = T(xn)yn + ynT(xn) for each x, y ∈ R, where n ≥ 1 is a fixed integer and R is any n!-torsion free semiprime ring. In addition, we talk over above identities in the setting of *-ring(ring with involution).

ON DERIVATIONS IN NONCOMMUTATIVE SEMIPRIME RINGS AND BANACH ALGEBRAS

  • PARK, KYOO-HONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.671-678
    • /
    • 2005
  • Let R be a noncommutative semi prime ring. Suppose that there exists a derivation d : R $\to$ R such that for all x $\in$ R, either [[d(x),x], d(x)] = 0 or $\langle$$\langle(x),\;x\rangle,\;d(x)\rangle$ = 0. In this case [d(x), x] is nilpotent for all x $\in$ R. We also apply the above results to a Banach algebra theory.

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.259-296
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $D(x)^2$[D(x),x] $\in$ rad(A) or [D(x),x]$D(x)^2$ $\in$ rad(A) for all x $\in$ A. In this case, we have D(A) $\subseteq$ rad(A).

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.179-201
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D\;:\;A{\rightarrow}A$ such that $D(x)[D(x),x]^2\;{\in}\;rad(A)$ or $[D(x), x]^2 D(x)\;{\in}\;rad(A)$ for all $x\;{\in}\ A$. In this case, we have $D(A)\;{\subseteq}\;rad(A)$.

  • PDF