• 제목/요약/키워드: semilinear term

검색결과 25건 처리시간 0.018초

NONEXISTENCE OF NODAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATION WITH SOBOLEV-HARDY TERM

  • Choi, Hyeon-Ock;Pahk, Dae-Hyeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.261-269
    • /
    • 2008
  • Let $B_1$ be a unit ball in $R^n(n{\geq}3)$, and $2^*=2n/(n-2)$ be the critical Sobolev exponent for the embedding $H_0^1(B_1){\hookrightarrow}L^{2^*}(B_1)$. By using a variant of Pohoz$\check{a}$aev's identity, we prove the nonexistence of nodal solutions for the Dirichlet problem $-{\Delta}u-{\mu}\frac{u}{{\mid}x{\mid}^2}={\lambda}u+{\mid}u{\mid}^{2^*-2}u$ in $B_1$, u=0 on ${\partial}B_1$ for suitable positive numbers ${\mu}$ and ${\nu}$.

  • PDF

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.

EXISTENCE AND REGULARITY FOR SEMILINEAR NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT SPACES

  • Jeong, Jin-Mun
    • East Asian mathematical journal
    • /
    • 제30권5호
    • /
    • pp.631-637
    • /
    • 2014
  • In this paper, we construct some results on the existence and regularity for solutions of neutral functional differential equations with unbounded principal operators in Hilbert spaces. In order to establish the existence and regularity for solutions of the neutral system by using fractional power of operators and the local Lipschtiz continuity of nonlinear term without using many of the strong restrictions considering in the previous literature.

Inverse problem for semilinear control systems

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Kwun, Young-Chel
    • 대한수학회보
    • /
    • 제33권4호
    • /
    • pp.603-611
    • /
    • 1996
  • Let consider the following problem: find an element u(t) in a Banach space U from the equation $$ x'(t) = Ax(t) + f(t,x(t)) + \Phi_0 u(t), 0 \leq t \leq T $$ with initial and terminal conditions $$ x(0) = 0, x(T) = \phi $$ in a Banach space X where $\phi \in D(A)$. This problem is a kind of control engineering inverse problem and contains nonlinear term, so that it is difficult and interesting. Thee proof main result in this paper is based on the Fredholm property of [1] in section 3. Similar considerations of linear system have been dealt with in many references. Among these literatures, Suzuki[5] introduced this problem for heat equation with unknown spatially-varing conductivity. Nakagiri and Yamamoto[2] considered the identifiability problem, which A is a unknown operator to be identified, where the system is described by a linear retarded functional differential equation. We can also apply to determining the magnitude of the control set for approximate controllability if X is a reflexive space, i.e., we can consider whether a dense subset of X is covered by reachable set in section 4.

  • PDF

NODAL SOLUTIONS FOR AN ELLIPTIC EQUATION IN AN ANNULUS WITHOUT THE SIGNUM CONDITION

  • Chen, Tianlan;Lu, Yanqiong;Ma, Ruyun
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.331-343
    • /
    • 2020
  • This paper is concerned with the global behavior of components of radial nodal solutions of semilinear elliptic problems -Δv = λh(x, v) in Ω, v = 0 on ∂Ω, where Ω = {x ∈ RN : r1 < |x| < r2} with 0 < r1 < r2, N ≥ 2. The nonlinear term is continuous and satisfies h(x, 0) = h(x, s1(x)) = h(x, s2(x)) = 0 for suitable positive, concave function s1 and negative, convex function s2, as well as sh(x, s) > 0 for s ∈ ℝ \ {0, s1(x), s2(x)}. Moreover, we give the intervals for the parameter λ which ensure the existence and multiplicity of radial nodal solutions for the above problem. For this, we use global bifurcation techniques to prove our main results.