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EXISTENCE AND REGULARITY FOR SEMILINEAR

NEUTRAL DIFFERENTIAL EQUATIONS IN HILBERT

SPACES

Jin-Mun Jeong

Abstract. In this paper, we construct some results on the existence and

regularity for solutions of neutral functional differential equations with
unbounded principal operators in Hilbert spaces. In order to establish

the existence and regularity for solutions of the neutral system by using

fractional power of operators and the local Lipschtiz continuity of non-
linear term without using many of the strong restrictions considering in

the previous literature.

1. Introduction

Let H and V be real Hilbert spaces such that V is a dense subspace in
H. In this paper, we are concerned with the global existence of solution and
the approximate controllability for the following abstract neutral functional
differential system in a Hilbert space H:{

d
dt [(x(t) + (Bx)(t)] = Ax(t) + f(t, x(t)) + k(t), t ∈ (0, T ],

x(0) = x0, (Bx)(0) = y0,
(1.1)

where A is an operator associated with a sesquilinear form on V ×V satisfying
G̊arding’s inequality, f is a nonlinear mapping of [0, T ]×V into H satisfying the
local Lipschitz continuity, B : L2(0, T ;V ) → L2(0, T ;H) is a bounded linear
mapping.

Recently, the existence of solutions for mild solutions for neutral differential
equations with state-dependence delay has been studied in the literature in [1]
and references therein. As for partial neutral integro-differential equations, we
refer to [2]. However there are few papers treating the regularity for neutral
systems with local Lipschipz continuity, we can just find a recent article Wang
[3] in case semilinear systems.
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In this paper, we construct some results on the regularity of solutions for
neutral functional differential equations with unbounded principal operators in
Hilbert spaces. In order to establish the existence and regularity of solutions of
the neutral system by using fractional power of operators and the local Lipschtiz
continuity of nonlinear term without using many of the strong restrictions
considering in the previous literature.

2. preliminaries

If H is identified with its dual space we may write V ⊂ H ⊂ V ∗ densely and
the corresponding injections are continuous. The norm on V , H and V ∗ will
be denoted by || · ||, | · | and || · ||∗, respectively. For brevity, we may regard that

||u||∗ ≤ |u| ≤ ||u||, ∀u ∈ V. (2.1)

Let a(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

Re a(u, u) ≥ δ||u||2, δ > 0. (2.2)

Let A be the operator associated with this sesquilinear form: (Au, v) = a(u, v)
for any u, v ∈ V. Then A is a bounded linear operator from V to V ∗ by the
Lax-Milgram Theorem. The realization of A in H which is the restriction of A
to D(A) = {u ∈ V : Au ∈ H} is also denoted by A. From (2.2) we may think
that there exists a constant C0 > 0 such that

||u|| ≤ C0||u||1/2D(A)|u|
1/2. (2.3)

Thus we have the following sequence:

D(A) ⊂ V ⊂ H ⊂ V ∗ ⊂ D(A)∗, (2.4)

where each space is dense in the next one and continuous injection.

Lemma 2.1. With the notations (2.3), (2.4), we have

(V, V ∗)1/2,2 = H, (D(A), H)1/2,2 = V,

where (V, V ∗)1/2,2 denotes the real interpolation space between V and V ∗(Sec.
1.3 of [4]).

It is also well known that A generates an analytic semigroup S(t) in both
H and V ∗. By virtue of (2.2), we have that 0 ∈ ρ(A) the closed half plane
{λ : Reλ ≥ 0} is contained in the resolvent set of A. In this case, A−α is a
bounded operator. So we can assume that there is a constant M0 > 0 such
that

||A−α||L(H) ≤M0, ||A−α||L(V ∗,V ) ≤M0. (2.5)

For each α ≥ 0 we can define the fractional power Aα(α > 0) of A and collect
some simple properties of the fractional power of A.
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Lemma 2.2. (a) Aα is a closed operator with its domain dense.
(b) If 0 < α < β, then D(Aα) ⊃ D(Aβ).
(c) For any T > 0, there exists a positive constant Cα such that the following
inequalities hold for all t > 0( [5, Lemma 3.6.2]):

||AαS(t)||L(H) ≤
Cα
tα
, ||AαS(t)||L(V,H) ≤

Cα
t3α/2

. (2.6)

By a simple calculation, we obtain the following.

Lemma 2.3. For every k ∈ L2(0, T ;H), let x(t) =
∫ t
0
S(t − s)k(s)ds for

0 ≤ t ≤ T . Then there exists a constant C2 such that such that

||x||L2(0,T ;V ) ≤ C2

√
T ||k||L2(0,T ;H). (2.7)

3. Neutral differential equations

In this section, we will show that the initial value problem (1.1) has a solution
by solving the integral equation:

x(t) =S(t)[x0 + y0]− (Bx)(t) +

∫ t

0

AS(t− s)Bx(s)ds

+

∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds.

Now we give the basic assumptions on the system (1.1)
Assumption (B). Let B : L2(0, T ;V )→ L2(0, T ;H) be a bounded linear

mapping such that there exists constants β > 2/3 and L > 0 such that

||AβBx||L2(0,T ;H) ≤ L||x||L2(0,T ;V ), ∀x ∈ L2(0, T ;V ).

Assumption (F). f is a nonlinear mapping of [0, T ]×V into H satisfying
following:

(i) There exists a function L1 : R+ → R such that for ||x|| ≤ r and
||y|| ≤ r,

|f(t, x)− f(t, y)| ≤ L1(r)||x− y||, t ∈ [0, T ].

(ii) The inequality

|f(t, x)| ≤ L1(r)(||x||+ 1)

holds For every t ∈ [0, T ] and x ∈ V .

From now on, we establish the following results on the solvability of the equa-
tion (1.1).

Theorem 3.1. Let Assumptions (B) and (F) be satisfied. Assume that x0 ∈ H,
k ∈ L2(0, T ;V ∗) for T > 0. Then, there exists a solution x of the equation (1.1)
such that

x ∈ W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H).
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Moreover, there is a constant C3 independent of x0 and the forcing term k such
that

||x||W1(T ) ≤ C3(1 + |x0|+ ||k||L2(0,T ;V ∗)). (3.1)

One of the main useful tools is the following Sadvoskii’s fixed point theorem.

Lemma 3.2. Suppose that Σ is a closed convex subset of a Banach space X.
Assume that K1 and K2 are mappings from Σ into X such that the following
conditions are satisfied:
(i) (K1 +K2)(Σ) ⊂ Σ,
(ii) K1 is a completely continuous mapping,
(iii) K2 is a contraction mapping.
Then the operator K1 +K2 has a fixed point in Σ.

Proof of Theorem.
Let r0 = 2(C1|x0 + y0|+ r0M0L), where C1 is constant satisfying

||x||W(T ) ≤ C1(||x0||+ ||k||L2(0,T ;H)). (3.2)

Let γ = max{1/2, (3β − 2)1/2}, choose 0 < T1 < T such that

T γ1
[
{C2L1(r0)(r0 + 1) + C2||k||L2(0,T1;V )}+ (3β − 2)−1/2r0LC1−β

]
(3.3)

≤ C1|x0 + y0|+ r0M0L,

where C2 is constant in (2.7) and

M̂ ≡ T γ1
{
C2L1(r0) + (3β − 2)−1/2C1−βL

}
< 1. (3.4)

Define a mapping J : L2(0, T1;V )→ L2(0, T1;V ) as

(Jx)(t) =S(t)(x0 + y0)− (Bx)(t)

+

∫ t

0

AS(t− s)(Bx)(s)ds+

∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds.

It will be shown that the operator J has a fixed point in the space L2(0, T1;V ).
By assumptions (B) and (F), we know that J is continuous from C([0, T1];H)
into itself. Let

Σ = {x ∈ L2(0, T1;V ) : ||x||L2(0,T1;V ) ≤ r0, x(0) = x0},

which is a bounded closed subset of L2(0, T1;V ). By (2.5) and Assumption (B)
we have

||Bx||L2(0,T1;V ) ≤ ||A−β ||L(H,V )||AβBx||L2(0,T1;H) ≤ r0M0L. (3.5)

By virtue of (2.7), for 0 < t < T1, it holds

||
∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds||L2(0,T1;V ) (3.6)

≤ C2

√
T1||f(·, x) + k||L2(0,T1;H)

≤ C2

√
T1{L1(r0)(r0 + 1) + ||k||L2(0,T1;V )}.
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Since (2.6) and Assumption (F) the following inequality holds:

||AS(t− s)Bx(s)|| = ||A1−βS(t− s)AβBx(s)|| ≤ C1−β

(t− s)3(1−β)/2
r0L,

there holds

||
∫ t

0

AS(t− s)Bx(s)ds||L2(0,T1;V ) ≤ (3β − 2)−1/2r0LC1−βT
√
3β−2

1 . (3.7)

Therefore, from (3.2), (3.4)-(3.7) it follows that

||Jx||L2(0,T1;V ) ≤ C1|x0 + y0|+ r0M0L

+ T γ1
[
{C2L1(r0)(r0 + 1) + C2||k||L2(0,T1;V )}+ (3β − 2)−1/2r0LC1−β

]
≤ r0,

and hence J maps Σ into Σ. Define mapping J = K1 +K2 on L2(0, T1;V ) by
the formula

(K1x)(t) =− (Bx)(t)

(K2x)(t) =S(t)(x0 + y0) +

∫ t

0

AS(t− s)(Bx)(s)ds

+

∫ t

0

S(t− s){f(s, x(s)) + k(s)}ds.

We can now employ Lemma 3.1 with Σ. Assume that a sequence {xn} of
L2(0, T1;V ) converges weakly to an element x∞ ∈ L2(0, T1;V ), i.e., w −
limn→∞ xn = x∞. Then we will show that

lim
n→∞

||K1xn −K1x∞|| = 0, (3.8)

which is equivalent to the completely continuity of K1 since L2(0, T1;V ) is
reflexive. For a fixed t ∈ [0, T1], let x∗t (x) = (K1x)(t) for every x ∈ L2(0, T1;V ).
Then x∗t ∈ L2(0, T1;V ∗) and we have limn→∞ x∗t (xn) = x∗t (x∞) since w −
limn→∞ xn = x∞. Hence,

lim
n→∞

(K1xn)(t) = (K1x∞)(t), t ∈ [0, T1].

By (2.5) and Assumption (B) we have

||(K1x)(t)|| ≤ ||A−β ||L(H,V )||AβBx||L2(0,T1;H) ≤ ∞.
Therefore, by Lebesgue’s dominated convergence theorem it holds

lim
n→∞

||K1xn||L2(0,T1;V ) = ||K1x∞||L2(0,T1;V ).

Since L2(0, T1;V ) is a Hilbert space, it holds (3.8).
Next, we prove that K2 is a contraction mapping on Σ. Indeed, for every

x1 and x2 ∈ Σ, by similar to (3.7) and (3.8), we have

||K2x1−K2x2||L2(0,T1;V ) ≤ T γ1
{
C2L1(r0)+(3β−2)−1/2C1−βL

}
||x1−x2||L2(0,T1;V ).

So by virtue of the condition (3.4) the contraction mapping principle gives that
the solution of (1.1) exists uniquely in [0, T1]. So by virtue of the condition



636 SHORT NAME OF FIRST AUTHOR

(3.4), K2 is contractive. Thus, Lemma 3.1 gives that the equation of (1.1) has
a solution in W1(T1).

From now on we establish a variation of constant formula (3.1) of solution
of (1.1). Let x be a solution of (1.1) and x0 ∈ H. Then we have that from
(3.5)-(3.8) it follows that

||x||L2(0,T1;V ) ≤ C1|x0 + y0|+ r0M0L+ T γ1
[
{C2L1(r0)(||x||L2(0,T1;V ∗) + 1)

+ C2||k||L2(0,T1;V ∗)}+ (3β − 2)−1/2C1−βL||x||L2(0,T1;V )

]
Taking into account (3.4), there exists a constant C3 such that

||x||L2(0,T1;V ) ≤ (1− M̂)−1
[
C1|x0 + y0|+ r0M0L

+ T γ1 {C2L1(r0) + C2||k||L2(0,T1;V ∗)}
]
≤ C3(1 + |x0|+ ||k||L2(0,T1;V ∗))

which obtain the inequality (3.1). Since the conditions (3.3) and (3.4) are
independent of initial value, we know

|x(T1)| ≤ ||x||C([0,T1;H]) ≤M1||x||W1(T ).

Here, we used the relationW1(T ) ↪→ C([0, T1;H]), which is an easy consequence
of the definition of real interpolation spaces by the trace method. So, by
repeating the above process, the solution can be extended to the interval [0, T ].
�

From the following result, we obtain that the solution mapping is continuous,
which is useful for physical applications of the given equation. The proof is
immediately obtained from Theorem 3.1.

Theorem 3.3. Let Assumptions (B) and (F) be satisfied and (x0, y0, k) ∈
H × H × L2(0, T ;V ∗). Then the solution x of the equation (1.1) belongs to
x ∈ W1(T ) ≡ L2(0, T ;V ) ∩W 1,2(0, T ;V ∗) and the mapping

H ×H × L2(0, T ;V ∗) 3 (x0, y0, k) 7→ x ∈ W1(T )

is continuous.

For k ∈ L2(0, T ;V ∗) let xk be the solution of equation (1.1) with k instead
of Bu. Here, we remark that if V is compactly embedded in H by assumption,
the embeddingW1(T ) ⊂ L2(0, T ;H) is compact in view of Theorem 2 of Aubin
[6]. So we can prove the following result from Theorem 3.1.

Corollary 3.4. Let us assume that the embedding V ⊂ H is compact. For
k ∈ L2(0, T ;V ∗) let xk be the solution of equation (1.1). Then the mapping
k 7→ xk is compact from L2(0, T ;V ∗) to L2(0, T ;H). Moreover, if we define
the operator F by F(k) = f(·, xk), then F is also a compact mapping from
L2(0, T ;V ∗) to L2(0, T ;H).
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