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NODAL SOLUTIONS FOR AN ELLIPTIC EQUATION IN AN

ANNULUS WITHOUT THE SIGNUM CONDITION

Tianlan Chen, Yanqiong Lu, and Ruyun Ma

Abstract. This paper is concerned with the global behavior of compo-

nents of radial nodal solutions of semilinear elliptic problems

−∆v = λh(x, v) in Ω, v = 0 on ∂Ω,

where Ω = {x ∈ RN : r1 < |x| < r2} with 0 < r1 < r2, N ≥ 2.
The nonlinear term is continuous and satisfies h(x, 0) = h(x, s1(x)) =

h(x, s2(x)) = 0 for suitable positive, concave function s1 and negative,

convex function s2, as well as sh(x, s) > 0 for s ∈ R \ {0, s1(x), s2(x)}.
Moreover, we give the intervals for the parameter λ which ensure the

existence and multiplicity of radial nodal solutions for the above problem.

For this, we use global bifurcation techniques to prove our main results.

1. Introduction

In this paper, by applying global bifurcation techniques, we study the exis-
tence and multiplicity of radial nodal solutions of elliptic equations in annular
bounded domains, i.e.,

(1)

{
−∆v = λh(x, v) in Ω,

v = 0 on ∂Ω,

where Ω = {x ∈ RN : r1 < |x| < r2} with 0 < r1 < r2, N ≥ 2 and λ > 0 is a
real parameter.

This model was studied by several authors (see e.g. [1, 2, 7, 8, 18]). In these
papers, existence and multiplicity of positive radial solutions were studied under
several behaviors of the nonlinearity, in particular, nonlinearities which are
superlinear at infinity and with different behaviors at the origin are considered.

On the other hand, more details about the geometry of the nonlinearity
become important when one is interested in the multiplicity of solutions, see
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for example the nice review in Lions [9], as was remarked in this paper, the
presence of zeros in the nonlinearity usually provides multiple solutions.

This paper is motivated by the recent work of Iturriaga, Massa, Sánchez and
Ubilla [8] who proved the existence and multiplicity of positive radial solutions
of (1). Since the radial problem in the annulus may be reduced to an ODE’s
problem, it will be possible to take advantage of some techniques available in
dimension one. Consequently, they restricted the attention to the problem

(2) u′′ + λq(t)f̃(t, u) = 0, t ∈ (0, 1), u(0) = 0 = u(1).

In fact, the change of variables

(3) t = − A

rN−2
+B and u(t) = v(r) if N ≥ 3

and

(4) r = r2

(r1

r2

)t
and u(t) = v(r) if N = 2

transform (1) into (2), where A = (r1r2)N−2

rN−2
2 −rN−2

1

, B =
rN−2
2

rN−2
2 −rN−2

1

. Note that, in

both cases, the function q(t) is well defined, continuous and bounded between
positive constants in the interval [0, 1].

Moreover, Iturriaga, Massa, Sánchez and Ubilla [8] made the following as-

sumptions for f̃ :
(H1) f̃ : [0, 1] × [0,+∞) → [0,+∞) is continuous and there exists a con-

tinuous function s1 : [0, 1] → (0,+∞), which is concave, such that f̃(t, 0) =

f̃(t, s1(t)) = 0 and f̃(t, s) > 0 for 0 < s < s1(t);
(H2) there exists a continuous function a : [0, 1]→ (0,+∞) such that

lim
s→0+

f̃(t, s)

s
= a(t) uniformly on [0, 1];

(H3) there exist positive constants α, β (α < β < 1) such that

lim
s→+∞

f̃(t, s)

s
= +∞ uniformly on [α, β];

(M) (a) the function f̃s := ∂f̃
∂s exists and is continuous for t ∈ [0, 1], u ∈

[0, s1(t)];

(b) f̃s <
f̃(t,s)
s for t ∈ (0, 1), u ∈ (0, s1(t)).

Let λk,m be the k-th eigenvalue of the eigenvalue problem

(5) u′′ + λm(t)u = 0, t ∈ (0, 1), u(0) = 0 = u(1),

where m : [0, 1] → R is a continuous function. Using the the sub and super-
solutions method, a priori estimates and degree theory, they established the
following results.

Theorem 1.1. Assume (H1)-(H3). Then there exists a positive solution of
problem (2) for every 0 < λ < λ1,qa.
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Theorem 1.2. Assume (H1)-(H3) and (M). Then there exist at least two or-
dered positive solutions of problem (2) for every λ > λ1,qa.

In this paper, we extend the function f̃ to continuous function f satisfying
our assumptions:

(A1) f : [0, 1] × R → R is continuous and there exists a continuous and
concave function s1 : [0, 1] → (0,+∞) such that f(t, s1(t)) = 0 = f(t, 0) and
sf(t, s) > 0 for s ∈ R \ {0, s1(t)};

(A2) f : [0, 1] × R → R is continuous and there exists a continuous and
convex function s2 : [0, 1] → (−∞, 0) such that f(t, s2(t)) = 0 = f(t, 0) and
sf(t, s) > 0 for s ∈ R \ {0, s2(t)};

(A3) there exists a continuous function a : [0, 1]→ (0,+∞) such that

lim
|s|→0

f(t, s)

s
= a(t) uniformly on [0, 1];

(A4) there exist positive constants 0 < α < β < 1 such that

lim
|s|→∞

f(t, s)

s
= +∞ uniformly on [α, β].

Applying global bifurcation techniques, we show the existence and multi-
plicity of nodal solutions to the problem of the similar form

(6) u′′ + λq(t)f(t, u) = 0, t ∈ (0, 1), u(0) = 0 = u(1).

We shall obtain the similar results as in [10] or [4] (with p = 2) for problem
(6), see Theorem 3.4 and Corollary 3.5 below. Moreover, as we said at the
beginning, our results for problem (6) may be applied on the existence and
multiplicity of radial nodal solutions for (1) by the change of variables (3) and
(4).

On the other hand, assume that
(A5) there exists a continuous function b : [0, 1]→ (0,+∞) such that

lim
|s|→∞

f(t, s)

s
= b(t) uniformly on [0, 1].

According to the proof of [3, Theorems 4.1 and 4.2] with p = 2, hypotheses
(A2) and (A5) imply that the component from the trivial solution at (λk,qa, 0)p
and the component from infinity at (λk,qb,∞)p are coincident (we shall denote
by (a, b)p the ‘point’ in some product spaces, and (a, b) the usual open interval
in this paper). Furthermore, if there exist positive constants f0, f∞ ∈ (0,∞)
such that a(t) ≡ f0, b(t) ≡ f∞, see [14] for details. However, we shall show in
Section 3 that these two components are disjoint under assumptions (A1)-(A3)
and (A5), see Theorem 3.1 and Corollaries 3.2-3.3 below. Hence the essential
role is played by the fact of whether f possesses these variable zeros.

For other results on the global bifurcation structure of nodal solutions of
nonlinear elliptic problems, see e.g. Ma, Chen and Lu [13] and the references
therein.
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The rest of this paper is arranged as follows. In Section 2, we state some
known results that will be used in the paper. Finally in Section 3, we study
the global behavior of the components of nodal solutions of problem (6).

2. Preliminaries

We state some properties of the superior limit of a certain infinity collection
of connected sets. Let M be a metric space and {Cn |n = 1, 2, . . .} be a family
of subsets of M . Then the superior limit D of {Cn} is defined by

(7) D := lim sup
n→∞

Cn = {x ∈M | ∃ {nk} ⊂ N, xnk
∈ Cnk

such that xnk
→ x}.

A component of a set M means a maximal connected subset of M, see [19]
for the detail.

Lemma 2.1 (see [12, Lemma 2.4] and [11, Lemma 2.2]). Let X be a Banach
space and let {Cn} be a family of closed connected subsets of X. Assume that

(i) there exist zn ∈ Cn, n = 1, 2, . . . and z∗ ∈ X such that zn → z∗;
(ii) lim

n→∞
rn = lim

n→∞
sup{‖u‖ |u ∈ Cn} =∞;

(iii) for every R > 0, (
⋃∞
n=1 Cn) ∩BR is a relatively compact of X.

Then there exists an unbounded component C in D and z∗ ∈ C.

Finally, we need to introduce the following strict monotonicity property with
respect to the weight m for the eigenvalue problem (5), see [6].

Lemma 2.2 (see [6]). Consider the eigenvalue problem (5). Let m and m̂ be
two bounded weights with m ≤6≡ m̂ (≤6≡ means inequality a.e. strict inequality
on a set of positive measure) and let j ∈ Z0. Then λj,m > λj,m̂ whenever they
exist.

3. Global behavior of the components of nodal solutions

Let

Y = C[0, 1], E = {u ∈ C1[0, 1] | u(0) = 0 = u(1)}
be the Banach spaces endowed with the norms

‖u‖∞ = max
t∈[0,1]

|u(t)|, ‖u‖ = max{‖u‖∞, ‖u′‖∞},

respectively.
Let S+

k denote the set of functions in E which have exactly k − 1 simple

(non-degenerate) zeros in (0, 1) and are positive near t = 0. Set S−k = −S+
k

and Sk = S−k ∪ S
+
k . It is clear that S−k and S+

k are disjoint and open in E.
Finally, for ν ∈ {+,−}, let Φνk = R× Sνk and Φk = R× Sk.

Let ξ, ζ ∈ C([0, 1]× R) be such that

f(t, u) = a(t)u+ ζ(t, u), f(t, u) = b(t)u+ ξ(t, u).
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Clearly,

lim
|u|→0

ζ(t, u)

u
= 0 and lim

|u|→∞

ξ(t, u)

u
= 0 uniformly on [0, 1].

Let us consider

(8)

{
u′′ + λq(t)a(t)u+ λq(t)ζ(t, u) = 0, t ∈ (0, 1),

u(0) = 0 = u(1)

as a bifurcation problem from the trivial solution u ≡ 0, and

(9)

{
u′′ + λq(t)b(t)u+ λq(t)ξ(t, u) = 0, t ∈ (0, 1),

u(0) = 0 = u(1)

as a bifurcation problem from infinity.
Applying Theorem 2 of [5] to (8), we have that for each integer k ≥ 1,

ν ∈ {+,−}, there exists a continuum Cνk,0 of solutions of (6) joining (λk,qa, 0)p
to infinity, and Cνk,0 \ {(λk,qa, 0)p} ⊂ Φνk.

Applying Theorem 1.6 and Corollary 1.8 of [17] to (9), we can show that for
each integer k ≥ 1, ν ∈ {+,−}, there exists a continuum Dνk,∞ of solutions of

(6) meeting (λk,qb,∞)p and Dνk,∞ \ {(λk,qb,∞)p} ⊂ Φνk.
Next, we prove that these two components are disjoint under the assump-

tions (A1) and (A2). Hence the essential role is played by the fact of whether
f possesses these variable zeros.

Theorem 3.1. Assume (A1)-(A3) and (A5).
(i) If (λ, u) ∈ (C+

k,0 ∪ C
−
k,0), then

(10) s2(t) < u(t) < s1(t), t ∈ [0, 1];

(ii) If (λ, u) ∈ (D+
k,∞ ∪ D

−
k,∞), then either

(11) u(t0) > s1(t0) or u(t0) < s2(t0)

for some t0 ∈ (0, 1).

Proof. Suppose, for sake of contradiction, that there exist (λ, u) ∈ C+
k,0 ∪C

−
k,0 ∪

D+
k,∞ ∪ D

−
k,∞ and t1, t2 ∈ (0, 1) such that

max{u(t) | t ∈ [0, 1]} = s1(t1),

or

min{u(t) | t ∈ [0, 1]} = s2(t2).

Let

0 = τ0 < τ1 < · · · < τk = 1

denote the zeros of u. In the following we will divide the proof into two cases.
Case 1. max{u(t) | t ∈ [0, 1]} = s1(t1).
In this case, there exists j ∈ {0, . . . , k − 1} such that t1 ∈ (τj , τj+1) and

u(t) ≤ s1(t), t ∈ [τj , τj+1].
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We claim that there exists a constant m > 0 such that

(12) f(t, u) ≤ m(s1(t)− u) and 0 ≤ u ≤ s1(t) for all t ∈ [τj , τj+1].

Obviously, the claim is true for the case u = 0 or u = s1(t) by (A1). Therefore,
assume by contradiction that there exists s0 ∈ (0, s1(t)) such that f(t, s0) >

m(s1(t)−s0) for any m > 0. It is apparent that m < f(t,s0)
s1(t)−s0 , which contradicts

the arbitrariness of m.
Combining (12) and s1 is concave, we have that

− (s1(t)− u(t))′′ + λmq(t)(s1(t)− u(t))

≥ λmq(t)(s1(t)− u(t))− λq(t)f(t, u) ≥ 0, t ∈ (τj , τj+1).

On the other hand, it can be easily seen from s1(t) > 0 that

(13) s1(τj)− u(τj) > 0, s1(τj+1)− u(τj+1) > 0.

Consequently, the strong maximum principle of [16] implies that s1(t) > u(t)
in [τj , τj+1], which is a contradiction.

Case 2. min{u(t) | t ∈ [0, 1]} = s2(t2).
In this case, there exists j ∈ {0, . . . , k − 1} such that t2 ∈ (τj , τj+1) and

u(t) ≥ s2(t), t ∈ [τj , τj+1].

By the similar argument to treat (12), owing to (A2), we can also show that
there exists a constant m > 0 such that

(14) f(t, u) ≥ m(s2(t)− u) and s2(t) ≤ u ≤ 0 for all t ∈ [τj , τj+1].

Combining this with s2 is convex, we get

− (s2(t)− u(t))′′ + λmq(t)(s2(t)− u(t))

≤ λmq(t)(s2(t)− u(t))− λq(t)f(t, u) ≤ 0, t ∈ (τj , τj+1).

On the other hand, it concludes from s2(t) < 0 that

(15) s2(τj)− u(τj) < 0, s2(τj+1)− u(τj+1) < 0.

The strong maximum principle of [16] implies that s2(t) < u(t) in [τj , τj+1],
which is a contradiction and ends the proof. �

For the convenience, we denote u+
k,∞, u−k,∞, u+

k,0 and u−k,0 by functions of

D+
k,∞,D

−
k,∞, C+

k,0 and C−k,0 respectively, such that u+
k,∞ changes sign exactly

k − 1 times in (0, 1) and is positive near 0; u−k,∞ changes sign exactly k − 1

times in (0, 1) and is negative near 0; u+
k,0 changes sign exactly k − 1 times in

(0, 1) and is positive near 0; u−k,0 changes sign exactly k− 1 times in (0, 1) and
is negative near 0.

According to Theorem 3.1 and Lemma 2.2, using the similar argument to
prove [10, Corollaries 2.1 and 2.2] with obvious changes, we obtain the following
results.
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Corollary 3.2. Assume (A1)-(A3) and (A5). Let a(t) ≤6≡ b(t). Then for
some k ∈ N,

(i) if λ ∈ (λk,qb, λk,qa], then problem (6) has two solutions u+
k,∞ and u−k,∞;

(ii) if λ ∈ (λk,qa,+∞), then problem (6) has four solutions u+
k,∞, u

−
k,∞, u

+
k,0

and u−k,0.

Corollary 3.3. Assume (A1)-(A3) and (A5). Let b(t) ≤6≡ a(t). Then for
some k ∈ N,

(i) if λ ∈ (λk,qa, λk,qb], then problem (6) has two solutions u+
k,0 and u−k,0;

(ii) if λ ∈ (λk,qb,+∞), then problem (6) has four solutions u+
k,∞, u

−
k,∞, u

+
k,0

and u−k,0.

The next result establishes the global behavior of components of nodal solu-
tions under the hypothesis (A4) (which means that the nonlinearity is locally
superlinear at +∞).

Theorem 3.4. Assume (A1), (A3) and (A4). Then for some k ∈ N,
(i) if λ ∈ (0, λk,qa), then problem (6) has two solutions u+

k,∞ and u−k , where

u−k changes sign exactly k − 1 times in (0, 1) and is negative near 0;

(ii) if λ = λk,qa, then problem (6) has one solution u+
k,∞;

(iii) if λ ∈ (λk,qa,+∞), then problem (6) has two solutions u+
k,∞, u+

k,0.

Proof. For any n ∈ N and n > s1(t). Let us define the function f [n] : [0, 1]×R→
R,

(16) f [n](t, s) :=

{
f(t, s), |s| ≤ n, t ∈ [0, 1],
f(t, n)
n s, |s| > n, t ∈ [0, 1].

Then f [n] : [0, 1]× R→ R is continuous and, for all t ∈ [0, 1],

f [n](t, s1(t)) = f [n](t, 0) = 0, sf [n](t, s) > 0 on s ∈ R \ {0, s1(t)},

and

(f [n])∞ =
f(t, n)

n
.

According to (A4), we have

(17) lim
n→∞

(f [n])∞ = +∞ uniformly on [α, β].

Consider the auxiliary problem

(18)

{
u′′ + λq(t)f [n](t, u) = 0, t ∈ (0, 1),

u(0) = 0 = u(1).

Let ξ[n] ∈ C([0, 1]× R) be such that

f [n](t, u) = (f [n])∞u+ ξ[n](t, u).
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Then

(19) lim
|u|→∞

ξ[n](t, u)

u
= 0 uniformly on [0, 1].

Let us consider

(20)

{
u′′ + λq(t)(f [n])∞u+ λq(t)ξ[n](t, u) = 0, t ∈ [0, 1],

u(0) = 0 = u(1)

as a bifurcation problem from infinity.
Applying Theorem 1.6 and Corollary 1.8 of [17] to (20), we have that for

each integer k ≥ 1 and n ∈ N with n > s1(t), there exists a continuum D[n],+
k,∞

of solutions of (18) meeting (
λk,q

(f [n])∞
,∞)p and D[n],+

k,∞ \ {(
λk,q

(f [n])∞
,∞)p} ⊂ Φ+

k .

By the similar argument to prove Theorem 3.1, for any (λ, u) ∈ D[n],+
k,∞ , we

can show that u(t0) > s1(t0) for some t0 ∈ (0, 1). Moreover,

(21) sup{λ | (λ, u) ∈ D[n],+
k,∞ } =∞.

Next we show that, for each n ∈ N and n > s1(t), there exists a positive
constant A such that

(22) sup{‖u‖∞ | (λ, u) ∈ D[n],+
k,∞ and λ ∈ I} ≤ A,

if I ⊂ (
λk,q

(f [n])∞
,∞) is a closed and bounded interval.

Assume by contradiction that there exists a sequence {(ηm, um)} ⊂ D[n],+
k,∞ ∩

(I × E) satisfying

(23) ‖um‖ → ∞ as m→∞.

We claim that

(24) ‖um‖∞ →∞ as m→∞.

Indeed, it is easy to see that (ηm, um) satisfies

(25) u′′m + ηmq(t)f
[n](t, um) = 0, t ∈ (0, 1), um(0) = 0 = um(1),

therefore, there exists tm ∈ (0, 1) with u′m(tm) = 0 and

(26) u′m(t) = −
∫ t

tm

ηmq(s)f
[n](s, um(s))ds.

If there exists a positive constant M such that ‖um‖∞ ≤M for each m, then,
according to (24) and the definition of f [n], we obtain that

‖u′m‖∞ ≤M1 for some M1 > 0 and all m,

which contradicts (23) and ends the proof of (24).
Let

(27) 0 = τ(0,m) < τ(1,m) < · · · < τ(k,m) = 1
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denote the zeros of um. Taking a subsequence and relabeling if necessary, we
may assume that for each l ∈ {0, . . . , k},
(28) lim

m→∞
τ(l,m) = τ(l,∞).

On the other hand, we can easily obtain that for all l ∈ {0, . . . , k − 1},

(29)
min{(−1)lum(t) : t ∈ J(l,m)}

≥ γmax{|um(t)| : t ∈ [τ(l,m), τ(l + 1,m)]},
where

J(l,m) :=
[
τ(l,m)+

τ(l + 1,m)− τ(l,m)

4
, τ(l+1,m)− τ(l + 1,m)− τ(l,m)

4

]
.

According to (24) and (29), we must have that there exist l∗ ∈ {0, . . . , k − 1}
and a closed interval J1 ⊂ (τ(l∗,∞), τ(l∗ + 1,∞)) with positive length such
that

(30) (−1)l
∗
um(t)→∞ as m→∞

uniformly for t ∈ J1. Owing to {ηm} ⊂ I, we can easily see that there exists

η∗ (η∗ >
λk,q

(f [n])∞
) such that

(31) lim
m→∞

ηm = η∗.

According to (30) and (31), we are driven to

(32) lim
m→∞

ηm
f [n](t, um)

um
= η∗(f

[n])∞ uniformly on t ∈ J1.

This together with η∗(f
[n])∞ > λk,q and

(33) u′′m + ηmq(t)
f [n](t, um)

um
um = 0, t ∈ J1,

we deduce that um must change its sign on J1 if m is large enough. This is a
contradiction and ends the proof of (22).

Now let us verify that {D[n],+
k,∞ } satisfy all of conditions of Lemma 2.1. Since

lim
n→∞

λk,q
(f [n])∞

= lim
n→∞

λk,q
f(t,n)
n

= 0 uniformly on t ∈ [α, β],

it follows from (22) that we can find a closed interval J ⊂ (0,∞) and a pos-
itive constant r, set Γ = {u ∈ E | s1(t0) < ‖u‖∞ < r}, then there exists

znj ∈ D
[n],+
k,∞ ∩ (J×Γ) such that znj → z∗, so condition (a) in Lemma 2.1 is sat-

isfied, and obviously, (b) holds. (c) can be deduced directly from Arzela-Ascoli

Theorem and the definition of f [n]. Therefore, the superior limit of {D[n],+
k,∞ }

contain an unbounded connected component D̄+
k,∞. Moreover, it follows from

(21) and the definition of lim sup
n→∞

D[n],+
k,∞ that

(34) sup{λ | (λ, u) ∈ D̄+
k,∞} =∞.



340 T. CHEN, Y. LU, AND R. MA

By the similar method to prove Theorem 3.1, for (λ, u) ∈ D̄+
k,∞, it becomes

apparent that u(t0) > s1(t0) for some t0 ∈ (0, 1).
We will show that

(35) lim
(λ,u)∈D̄+

k,∞,‖u‖→∞
λ = 0.

Indeed, assume by contradiction that there exists {(λn, un)} ⊂ D̄+
k,∞ such that

‖un‖ → ∞, λn ≥ a0 for some positive constant a0. Then (24), (29) and (30)
hold. According to (A4) and (30), one has that

lim
n→∞

f(t, un)

un
=∞ uniformly on t ∈ J1,

which implies that, for all n sufficiently large, the solution un of

u′′n + λnq(t)
f(t, un)

un
un = 0

must change its sign on J1. This contradicts (30) and so (35) holds. Owing to
(34) and (35), it becomes apparent that

(36) ProjRD̄+
k,∞ = (0,∞).

On the other hand, by Theorem 3.1(i), for any (λ, u) ∈ C+
k,0,

(37) ‖u‖∞ < ‖s1‖∞.

This together with (8) imply that

(38) ‖u‖ < max{‖s1‖∞, λ‖q‖∞ max
t∈[0,1],|s|≤‖s1‖∞

|f(t, s)|},

which means that the set {(µ, z) ∈ C+
k,0 | µ ∈ [0, d]} is bounded for any fixed

d ∈ (0,∞). This together with the fact that C+
k,0 joins (λk,qa, 0)p to infinity

yields that

(39) ProjRC+
k,0 ⊃ (λk,qa,+∞).

Finally, by applying Theorem 2 of [5] to (8), for each integer k ≥ 1, we have
that there exists unbounded continuum C−k joining (λk,qa, 0)p to infinity such

that C−k \ {(λk,qa, 0)p} ⊂ Φ−k .
In the following, we shall use some idea from the proof of [15, Theorem 1.1]

to prove C−k joins (λk,qa, 0)p to (0,∞)p.

Let {(µm, um)} ⊂ C−k be such that |µm|+ ‖um‖ → ∞ as m→∞. If {‖um‖}
is bounded, then we may assume that

(40) lim
m→∞

µm =∞.

Using (27), (28) and noting that
∑k−1
l=0 [τ(l + 1,∞) − τ(l,∞)] = 1, it follows

that there exists l0 ∈ {0, . . . , k − 1} such that

(41) τ(l0,∞) < τ(l0 + 1,∞).
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Thus there exist m0 ∈ N and a closed interval I0 ⊂ (τ(l0,∞), τ(l0 + 1,∞))
with positive length such that I0 ⊂ (τ(l0,m), τ(l0 + 1,m)) for all m ≥ m0, and
hence

(42) (−1)l0+1um > 0 for all m ≥ m0, t ∈ I0.
Then it follows from (40) and

(43) − u′′m = µmq(t)f(t, um), t ∈ I0,
that um must change its sign on I0 if m is large enough, which contradicts (42).
Hence {‖um‖} is unbounded. Thus, by using the similar argument to prove
(35), we can also show limm→∞ µm = 0, and so

(44) ProjRC−k ⊃ (0, λk,qa).

Consequently, according to (36), (39) and (44), we get the desired results.
�

As an immediate consequence of Theorem 3.4, we get the following:

Corollary 3.5. Assume (A2), (A3) and (A4). Then for some k ∈ N,
(i) if λ ∈ (0, λk,qa), then problem (6) has at least two solutions u−k,∞ and u+

k ,

where u+
k has exactly k − 1 zeros in (0, 1) and is positive near 0;

(i) if λ = λk,qa, then problem (6) has at least one solution u−k,∞;

(ii) if λ ∈ (λk,qa,+∞), then problem (6) has at least two solutions u−k,∞,

u−k,0.

Remark 3.6. If (A1) holds, then for all t ∈ [0, 1],

f(t, s) > 0, s ∈ (0, s1(t)) ∪ (s1(t),∞),

which is a stronger condition imposed on f than (H1). However, under (A1),
we can get the same interval in which (6) has one positive solution and one
negative solution without the assumption (M). Compared with Theorems 1.1
and 1.2, by using the global bifurcation theory, Theorem 3.4 implies that there
exists at least one solution for (6) if λ = λk,qa.

References

[1] A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue

problems, J. Math. Anal. Appl. 73 (1980), no. 2, 411–422. https://doi.org/10.1016/

0022-247X(80)90287-5

[2] G. Dai, Bifurcation and one-sign solutions of the p-Laplacian involving a nonlinearity

with zeros, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5323–5345. https://doi.org/
10.3934/dcds.2016034

[3] G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for p-

Laplacian, J. Differential Equations 252 (2012), no. 3, 2448–2468. https://doi.org/

10.1016/j.jde.2011.09.026

[4] G. Dai, R. Ma, and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear
problems without the signum condition, J. Math. Anal. Appl. 397 (2013), no. 1, 119–123.
https://doi.org/10.1016/j.jmaa.2012.07.056

https://doi.org/10.1016/0022-247X(80)90287-5
https://doi.org/10.1016/0022-247X(80)90287-5
https://doi.org/10.3934/dcds.2016034
https://doi.org/10.3934/dcds.2016034
https://doi.org/10.1016/j.jde.2011.09.026
https://doi.org/10.1016/j.jde.2011.09.026
https://doi.org/10.1016/j.jmaa.2012.07.056


342 T. CHEN, Y. LU, AND R. MA

[5] E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indi-

ana Univ. Math. J. 23 (1973/74), 1069–1076. https://doi.org/10.1512/iumj.1974.

23.23087

[6] D. G. de Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique

continuation, Comm. Partial Differential Equations 17 (1992), no. 1-2, 339–346. https:
//doi.org/10.1080/03605309208820844

[7] D. D. Hai, Positive solutions for semilinear elliptic equations in annular domains, Non-

linear Anal. 37 (1999), no. 8, Ser. A: Theory Methods, 1051–1058. https://doi.org/
10.1016/S0362-546X(98)00029-7

[8] L. Iturriaga, E. Massa, J. Sánchez, and P. Ubilla, Positive solutions for an elliptic

equation in an annulus with a superlinear nonlinearity with zeros, Math. Nachr. 287
(2014), no. 10, 1131–1141. https://doi.org/10.1002/mana.201100285

[9] P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM

Rev. 24 (1982), no. 4, 441–467. https://doi.org/10.1137/1024101
[10] R. Ma, Global behavior of the components of nodal solutions of asymptotically linear

eigenvalue problems, Appl. Math. Lett. 21 (2008), no. 7, 754–760. https://doi.org/

10.1016/j.aml.2007.07.029

[11] R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value

problems involving integral conditions, Nonlinear Anal. 71 (2009), no. 10, 4364–4376.
https://doi.org/10.1016/j.na.2009.02.113

[12] , Global structure of positive solutions for superlinear second order m-point

boundary value problems, Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 279–290.
https://doi.org/10.12775/TMNA.2009.043

[13] R. Ma, T. Chen, and Y. Lu, On the Bonheure-Noris-Weth conjecture in the case of

linearly bounded nonlinearities, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 8,
2649–2662. https://doi.org/10.3934/dcdsb.2016066

[14] R. Ma and B. Thompson, Nodal solutions for nonlinear eigenvalue problems, Nonlinear

Anal. 59 (2004), no. 5, 707–718. https://doi.org/10.1016/j.na.2004.07.030
[15] , Multiplicity results for second-order two-point boundary value problems with

superlinear or sublinear nonlinearities, J. Math. Anal. Appl. 303 (2005), no. 2, 726–
735. https://doi.org/10.1016/j.jmaa.2004.09.002

[16] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations,

corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. https://doi.
org/10.1007/978-1-4612-5282-5

[17] P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations 14 (1973),

462–475. https://doi.org/10.1016/0022-0396(73)90061-2
[18] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the

annulus, J. Differential Equations 109 (1994), no. 1, 1–7. https://doi.org/10.1006/

jdeq.1994.1042

[19] G. T. Whyburn, Topological Analysis, Princeton Mathematical Series. No. 23, Princeton

University Press, Princeton, NJ, 1958.

Tianlan Chen
Department of Mathematics

Northwest Normal University

Lanzhou 730070, P. R. China
Email address: chentianlan511@126.com

https://doi.org/10.1512/iumj.1974.23.23087
https://doi.org/10.1512/iumj.1974.23.23087
https://doi.org/10.1080/03605309208820844
https://doi.org/10.1080/03605309208820844
https://doi.org/10.1016/S0362-546X(98)00029-7
https://doi.org/10.1016/S0362-546X(98)00029-7
https://doi.org/10.1002/mana.201100285
https://doi.org/10.1137/1024101
https://doi.org/10.1016/j.aml.2007.07.029
https://doi.org/10.1016/j.aml.2007.07.029
https://doi.org/10.1016/j.na.2009.02.113
https://doi.org/10.12775/TMNA.2009.043
https://doi.org/10.3934/dcdsb.2016066
https://doi.org/10.1016/j.na.2004.07.030
https://doi.org/10.1016/j.jmaa.2004.09.002
https://doi.org/10.1007/978-1-4612-5282-5
https://doi.org/10.1007/978-1-4612-5282-5
https://doi.org/10.1016/0022-0396(73)90061-2
https://doi.org/10.1006/jdeq.1994.1042
https://doi.org/10.1006/jdeq.1994.1042


NODAL SOLUTIONS WITHOUT THE SIGNUM CONDITION 343

Yanqiong Lu

Department of Mathematics

Northwest Normal University
Lanzhou 730070, P. R. China

Email address: linmu8610@163.com

Ruyun Ma

Department of Mathematics

Northwest Normal University
Lanzhou 730070, P. R. China

Email address: mary@nwnu.edu.cn


