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ABSTRACT. Let B1 be a unit ball in Rn (n ≥ 3), and 2∗ = 2n/(n− 2) be the critical
Sobolev exponent for the embedding H1

0 (B1) ↪→ L2∗(B1). By using a variant of Pohozǎev’s
identity, we prove the nonexistence of nodal solutions for the Dirichlet problem−∆u−µ u

|x|2 =

λu + |u|2∗−2u in B1, u = 0 on ∂B1 for suitable positive numbers µ and ν.

1. INTRODUCTION

In this paper we deal with the nonexistence of nodal solutions(changing-sign solutions) for
the following problem

{ −∆u− µ u
|x|2 = λu + |u|2∗−2u in B1

u = 0 on ∂B1,
(1)

where B1 is a unit ball in Rn (n ≥ 3), and 2∗ = 2n/(n− 2).
In recent years, much attention has been paid to the existence of nontrivial solutions to (1)

where 0 ≤ µ < µ̄ = (n−2
2 )2, λ ∈ R. The well-known Hardy’s inequality implies that the

linear elliptic operator L = −∆− µI/|x|2 is positive and has discrete spectrum if and only if
µ < µ̄ = (n− 2)2/4. In particular, L has a first eigenvalue, say λ1(µ), which is a solution to
the problem

λ1(µ) = min
ϕ∈H1

0 (B1)

∫
B1
|∇ϕ|2 − µ

∫
B1

ϕ2/|x|2∫
B1

ϕ2
.
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Using Pohožaev-type identity we can show that (1) has no solution since B1 is star shaped
with respect to x = 0 and λ ≤ 0. Hence we investigate the problem (1) in the confined range
0 < λ < λ1(µ) and 0 ≤ µ < µ̄.

Using the local Palais-Smale condition, Jannelli proved the following result in [8]:
(i) If 0 < µ ≤ µ̄ − 1, then (1) has at least one positive solution u ∈ H1

0 (Ω) when 0 < λ <
λ1(µ);
(ii) If µ̄ − 1 < µ < µ̄, then (1) has at least one positive solution u ∈ H1

0 (Ω) when
λ∗(µ) < λ < λ1(µ), where

λ∗(µ) = min
ϕ∈H1

0 (Ω)

[ ∫

Ω

|∇ϕ(x)|2
|x|2γ

dx/

∫

Ω

ϕ2(x)
|x|2γ

dx
]

and γ =
√

µ̄ +
√

µ̄− µ;
(iii) If µ̄− 1 < µ < µ̄, then (1) has no positive solution for λ ≤ λ∗(µ).

This known result shows that any dimension n may be critical for problem (1); now it is
only a matter of how µ is close to µ̄. This type of equations were also studied. Ruiz-Willem
extended the Jannelli’s result in [10]. They proved that (1) has a positive solution not just for
0 ≤ µ < µ̄− 1 but also for µ < 0. The existence of nodal solutions for (1) was investigated by
Cao-Feng [2] and Choi [5]. In 2003 Cao-Feng [2] obtained the following existence result by
applying the min-max principles:
Let n ≥ 7, 0 < λ < λ1(µ) and 0 < µ < µ̄ − 4 = (n + 2)(n− 6)/4. Then there exists a pair
of nodal solutions u± of (1) satisfying

∫

B1

|u|2∗−2uv(u) = 0,

where v(u) is the first eigenfunction of the weighted eigenvalue problem

−(∆u + µ
u

|x|2 + λu)v = γ|u|2∗−2v in B1, u = 0 on ∂B1.

For the case without Sobolev-Hardy terms in a bounded domain Ω ⊂ Rn

−∆u = λu + |u|2∗−2u in Ω, u = 0 on ∂Ω, (2)

there have been so far many works on the existence and nonexistence of nodal solutions. Espe-
cially, Ceramini-Solimini-Struwe [4] obtained existence results on nodal solutions of (2) such
that if n ≥ 6, then (2) admits a pair of nodal solutions for each 0 < λ < λ1 where λ1 is the first
eigenvalue of −∆(Ω) with zero Dirichlet boundary data and moreover, if n ≥ 7, then under
Ω = B1, (2) admits a pair of radial solutions with exactly k nodes for any integer k ≥ 0. For
the nonexistence of nodal solutions of (2), it is known that if n ∈ {3, 4, 5, 6}, then for small
λ > 0 (2) has no nodal radial solution. Wang-Wu [11] considered the nonexistence of nodal
radial solutions for (2) by using Pohožaev’s identity which makes their argument simple.
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In 2001 Bae-Pahk [1] considered the Dirichlet problem

−∆u = λ|x|µ|u|q−2u + |x|ν |u|p−2u in B1, u = 0 on ∂B1, (3)

where µ, ν > −2, p = 2(n+ν)/(n−2), 2 ≤ q < 2(n+µ)/(n−2) and λ is a real parameter.
They extended the previous results for the nonexistence to (3) as follows :
Assume that µ, ν > −2 and 2 ≤ q ≤ (n+2+2ν)/(n−2)min{1, (2+µ)/(2+ν)}. Then there
exists a constant λ̃ > 0 such that for λ ∈ (0, λ̃), (3) has no nodal radial solution in H1

0 (B1).

Similarly we investigate the nonexistence of nodal solutions for (1). We prove the following
nonexistence result by using a variant of Pohožaev’s identity :

Theorem 1.1. Let n = 3, 4, 5, 6 and 0 < µ < µ̄. Then there exists a constant λ∗ > 0 such that
for λ ∈ (0, λ∗), (1) has no nodal radial solution.

Remark Let n ≥ 7 , 0 < λ ≤ λ∗(µ) and µ̄− 1 < µ < µ̄. Then (1) has no nodal radial solu-
tion. We can prove the result adopting a Pohožaev-type argument, in analogy with the proof of
Theorem C in [3] and Theorem 1.C. in [8].

We have the gap between the values of µ determining the existence and nonexistence of nodal
solutions. We guess that the following is true: Let n ≥ 7, and µ̄ − 4 ≤ µ ≤ µ̄ − 1. Then (1)
has no nodal radial solution for some values of λ.

2. PRELIMINARIES

In this section, we collect some known facts and present basic observations.
The imbedding of H1

0 (B1) in L2(B1) with respect to the weight |x|−2 is continuous.

Lemma 2.1. [7] Suppose 0 ≤ µ < µ̄ and µ̄ = (n−2
2 )2. Then we have

(i) (Hardy’s inequality)

µ̄

∫

B1

|u|2
|x|2 ≤

∫

B1

|∇u|2, ∀ u ∈ H1
0 (B1);

(ii) The constant µ̄ is optimal.

Now we define the constant Sµ and investigate the properties of Sµ. Let D1,2(Rn) = {u ∈
L2∗(Rn)| |∇u| ∈ L2(Rn)}. For all µ ∈ [0, µ̄), we define the constant

Sµ := inf
u∈D2

1(Rn)/{0}

∫
Rn |∇u|2dx− µ

∫
Rn u2/|x|2dx

(
∫
Rn |u|2∗dx)2/2∗ .

Lemma 2.2. [6] Suppose 0 ≤ µ < µ̄. Then we have
(i) Sµ is the best constant for the embedding

{u ∈ D1,2(Rn) :
∫

Rn

(|∇u|2 − µu2/|x|2)dx < ∞} ↪→ L2∗(Rn);
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(ii) Sµ is independent of any Ω ⊂ Rn in the sense that if

Sµ(Ω) = inf
u∈D2

1(Ω)/{0}

∫
Ω |∇u|2dx− µ

∫
Ω u2/|x|2dx

(
∫
Ω |u|2∗dx)2/2∗ ,

then Sµ(Ω) = Sµ(Rn) = Sµ;
(iii) When Ω = Rn, Sµ is achieved by the functions

Uε(x) =
Cε

(ε|x|γ′/√µ̄ + |x|γ/
√

µ̄)
√

µ̄
,

where γ =
√

µ̄+
√

µ̄− µ, γ
′
=
√

µ̄−√µ̄− µ, and Cε = (4εn(µ̄−µ)
n−2 )

√
µ̄/2, ∀ ε > 0. Moreover,

the functions Uε(x) are the only positive radial solutions of −∆u− µ
|x|2 u = |u|2∗−2u in Rn.

To estimate the asymptotic behavior of positive solutions of (1) near an isolated singularity
at r = 0, we need the following Proposition and Lemmas.

Lemma 2.3. If u is a positive radial solution of (1) in Ba, 0 < a ≤ 1 and u(a) = 0, then u
goes to ∞ as r → 0.

Proof. See Lemma 2.14 in [5]. ¤

Proposition 2.4. Let u be a nonnegative function in H1
0 (B1) satisfying the following inequal-

ity: ∫

B1

∇u∇φ ≤ C

∫

B1

|x|ν(u + u(n+2+2ν)/(n−2))φ

for all φ ∈ H1
0 (B1). If either −2 < ν ≤ 0, or −2 < ν and u is radial, then u is bounded near

0.

Proof. See Proposition 2.2 in [1]. ¤

Lemma 2.5. Let νi > −2, i = 1, 2, · · · , k with k ∈ N. If u is a nonnegative function in
Hr(Ba) for some a > 0 satisfying

∫

Ba

∇u∇φ ≤ C

k∑

i=1

∫

Ba

|x|νi(u + u(n+2+2νi)/(n−2))φ (4)

for all φ ∈ Hr(Ba). Then, u is bounded near 0.

Proof. See Lemma 2.3 in [1]. ¤

Lemma 2.6. Let n ≥ 3, λ ∈ R, and 0 < µ < µ̄. If u is a positive radial solution of (1) in
Ba, 0 < a < 1 and u(a) = 0, then

u(ρ) = O(ρ−γ′)

near 0.
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Proof. Let w(ρ) = ργ
′
u. Then w satisfies

w
′′

+
1 + 2

√
µ̄− µ

ρ
w
′
+ λw + ρ−2+ 4

n−2

√
µ̄−µw2∗−1 = 0, 0 < ρ < a, w(a) = 0,

In fact, w is a positive radial solution of the equation

−∇ · (|x|α∇w) = λ|x|αw + |x|−n+ 2n
n−2

√
µ̄−µ|w|2∗−2w in Ba, w = 0 on ∂Ba,

where α = 2− n + 2
√

µ̄− µ.

Set v(y) = ((n− 2)/2
√

µ̄− µ)(n−2)/2w(x) and |y| = |x|2
√

µ̄−µ/(n−2). After a direct calcula-
tion we have

−∆v = λ
( n− 2

2
√

µ̄− µ

)2
|y|

(n−2−2
√

µ̄−µ)√
µ̄−µ v + |v|2∗−2v in Ba, v = 0 on ∂Ba.

Then v satisfies (4) for some constant C. Therefore, from Lemma 2.5, v is bounded near 0. So
w is bounded near 0. ¤

One of our methods for nonexistence of nodal solutions is to use a variant of Pohožaev-
Pucci-Serrin’s identity (see Proposition 1 in [9] with F(x, u, p) = 1

2 |p|2 − F (x, u), h(x) =
x, a = (n− 2)/2).

Lemma 2.7. Let f and ∇xF be continuous on Ω̄ × R, where F (x, u) =
∫ u
0 f(x, t)dt. If

u ∈ C2(Ω) ∩ C1(Ω̄) satisfies ∆u + f(x, u) = 0 in Ω, then
∫

Ω

[
nF (x, u)− n− 2

2
uf(x, u) + x · ∇xF (x, u)

]

=
∫

∂Ω

[
(x · ∇u)

∂u

∂n
− (x · n)

|∇u|2
2

+ (x · n)F (x, u) +
n− 2

2
u

∂u

∂n

]
, (5)

where ∂n denotes the exterior unit normal.

Using Lemma 2.7 we can show that (1) has no nontrivial radial solution when λ ≤ 0.

Lemma 2.8. Assume that n ≥ 3, λ ≤ 0 and 0 < µ < µ̄. If u is a nonnegative radial solution
of (1) in Ba, 0 < a ≤ 1 and u(a) = 0, then u ≡ 0 in Ba.

Proof. Since u ∈ C2(Ba/Bδ) for any 0 < δ < a, we can apply (5) to u on Ba/Bδ. Then, as
δ → 0, it follows from Lemma 2.6 that

1
2
ωnan|u′(a)|2 = λ

∫

Ba

|u|2. (6)

When λ < 0, it follows immediately from (6) that u ≡ 0 in Ba. When λ = 0, we deduce from
(6) that u′(a) = 0 and then by the uniqueness theorem for initial value problems of ODE we
have u ≡ 0 in Ba. ¤
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3. NONEXISTENCE OF NODAL SOLUTIONS

In this chapter we prove the nonexistence result of nodal solutions to (1) using a variant of
Pohožaev’s identity.

For a radial solution u ∈ Hr(B1) of (1), equation (1) is written in the form

u′′ +
n− 1

ρ
u′ + µ

u

ρ2
+ λu + |u|2∗−2u = 0, 0 < ρ < 1, u(1) = 0. (7)

When u > 0 in (0, a) and u(a) = 0 for some 0 < a < 1, the derivative of u at the first zero
point a is estimated in terms of λ and a. We adopt some argument in [1] and [11] to obtain the
following result:

Lemma 3.1. Let n = 3, 4, 5, 6, λ > 0 and 0 < µ < µ̄. If u is a positive radial solution of (1)
in Ba, 0 < a < 1 and u(a) = 0, then the derivatives of u at a satisfies

|u′(a)| ≤ Cλ(n+2)/8a−(n−2)/4 (8)

for some C > 0.

Proof. It is easy to see that u ∈ C2(Ba/Bδ) for any 0 < δ < a. Then the Pohožaev-Pucci-
Serrin’s identity (5) implies

an

2
|u′(a)|2 =

λ

ωn

∫

Ba/Bδ

|u|2

+
[δn

2
(u

′
)2 +

1
2
µδn−2u2 +

1
2
λδnu2 +

1
2∗

δn|u|2∗ +
n− 2

2
δn−1uu

′]
r=δ

.

Since u ∈ H1
0 (Ba), there exists a sequence {δi} converging to 0 such that δn

i (u
′
(δi))2 → 0 as

δi → 0. Therefore, using Lemma 2.6, we lead to

1
2
ωnan|u′(a)|2 = λ

∫

Ba

|u|2. (9)

Integrating (1) on Ba/Bδ to obtain

ωn(δn−1u
′
(δ)− an−1u

′
(a)) =

∫

Ba/Bδ

(µ
u

ρ2
+ λu + u2∗−1)

and then letting δ → 0, we observe

ωnan−1|u′(a)| =
∫

Ba

(µ
u

ρ2
+ λu + u2∗−1). (10)

Combining (9) and (10) implies
∫

Ba

(µ
u

ρ2
+ λu + u2∗−1) =

(
2λan−2ωn

∫

Ba

|u|2
) 1

2
. (11)
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Since 2 ≤ 2∗ − 1 for n = 3, 4, 5, 6, we obtain by using Hölder’s inequality,∫

Ba

|u|2 ≤
(∫

Ba

1(2∗−1)/(2∗−3)
)(2∗−3)/(2∗−1)(∫

Ba

|u|2∗−1
)2/(2∗−1)

=
(ωn

n
an

)−(n−6)/(n+2)(∫

Ba

|u|2∗−1
)2(n−2)/(n+2)

(12)

and by (11) and (12),∫

Ba

(µ
u

ρ2
+ λu + u2∗−1)

≤
[
2λωnan−2

(ωnan

n

)−(n−6)/(n+2)(∫

Ba

|u|2∗−1
)2(n−2)/(n+2)]1/2

≤
[
2λωnan−2

(ωnan

n

)−(n−6)/(n+2){∫

Ba

(µ
u

ρ2
+ λu + u2∗−1)

}2(n−2)/(n+2)]1/2

= Cλ1/2a(3n−2)/(n+2)
[ ∫

Ba

(µ
u

ρ2
+ λu + u2∗−1)

](n−2)/(n+2)
.

Hence we have ∫

Ba

(µ
u

ρ2
+ λu + u2∗−1) ≤ Cλ(n+2)/8a(3n−2)/4.

Then, we have the inequality from (10)

ωnan−1|u′(a)| ≤ Cλ(n+2)/8a(3n−2)/4.

Thus we obtain (8) by dividing the above inequality by ωnan−1. ¤
For a radial solution of (7) on an annulus B1/Ba, we obtain the lower bound of |v′(a)|.

Lemma 3.2. Assume that 0 < λ < λ1(µ) and 0 < µ < µ̄. If v is a radial solution of (7) in
[a, 1] for some 0 < a < 1 satisfying v(a) = v(1) = 0 and v

′
(a) 6= 0, then there holds

|v′(a)| ≥ C

a
(13)

for some C > 0.

Proof. Let |v(ρ)| attain its maximum at ρ = τ . For ρ ∈ [a, τ ],

|v′(ρ)| = ρ1−n

∫ τ

ρ
(µ

v

s2
+ λv + v2∗−1)sn−1ds. (14)

Considering ρ = a in (14), we have

|v′(ρ)| ≤ (
a

ρ
)n−1|v′(a)|

and

|v(τ)| ≤
∫ τ

a
|v′(ρ)| dρ ≤ a

n− 2
|v′(a)|. (15)
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Let B1,a = B1/Ba. Since v is a solution of (7)
∫

B1,a

(|∇v|2 − µ
v2

ρ2
)− λ

∫

B1,a

v2 =
∫

B1,a

|v|2∗ .

By the definition of λ1(µ), we have
(
1− λ

λ1(µ)

) ∫

B1,a

(|∇v|2 − µ
v2

ρ2
) ≤

∫

B1,a

|v|2∗ .

Also Hardy’s inequality implies that
∫

B1,a

|∇v|2 − µ

µ̄

∫

B1,a

|∇v|2 ≤
∫

B1,a

|∇v|2 − µ

∫

B1,a

v2

ρ2
.

Combining the above two inequalities we obtain
(
1− λ

λ1(µ)

)(
1− µ

µ̄

)∫

B1,a

|∇v|2 ≤
∫

B1,a

|v|2∗ .

Then, by the definition of Sµ, we have
(
1− λ

λ1(µ)

)(
1− µ

µ̄

)∫

B1,a

|∇v|2 ≤
∫

B1,a

|v|2∗ ≤ S−2∗/2
µ

(∫

B1,a

|∇v|2
)2∗/2

(16)

Therefore we obtain ∫

B1,a

|∇v|2 ≥ C

for some C > 0. Then, we conclude from (16) that for fixed 0 < λ < λ1(µ) and 0 < µ < µ̄,∫

B1,a

|v|2∗ > C

for some constant C > 0 independent of v, which implies immediately that |v(τ)| > C for
some C > 0. Therefore, it follows from (15) that

|v′(a)| ≥ n− 2
a

|v(τ)| ≥ n− 2
a

C > 0

for some C > 0. ¤
Combining Lemma 3.1 and 3.2, we have the nonexistence for small λ > 0.

Proof of Theorem 1.1.

Proof. Let w(x) be a radial solution of (1). Suppose that w changes sign; w > 0 in Ba and
w(a) = 0 for some a with 0 < a < 1 and w 6≡ 0 in B1/Ba. By u and v, we denote the
restrictions of w(x) to Ba and B1/Ba respectively. Then u

′
(a) = v

′
(a). Since

−n− 2
4

− (−1) ≥ 0,

(8) and (13) lead to a contradiction for small λ > 0. ¤
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