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ABSTRACT. Let B; be a unit ball in R™ (n > 3), and 2* = 2n/(n — 2) be the critical
Sobolev exponent for the embedding H{ (B1) < L*" (By). By using a variant of Pohoziev’s
identity, we prove the nonexistence of nodal solutions for the Dirichlet problem —Au— M# =

M+ |u|? 2w in By, uw =0 on dB for suitable positive numbers 1 and v.

1. INTRODUCTION

In this paper we deal with the nonexistence of nodal solutions(changing-sign solutions) for
the following problem
{ —Au—p# = u+ |[ul> "2u in B )
u =0 on 0By,
where Bj is a unit ball in R™ (n > 3), and 2* = 2n/(n — 2).

In recent years, much attention has been paid to the existence of nontrivial solutions to (1)
where 0 < p < o1 = (”7_2)2, A € R. The well-known Hardy’s inequality implies that the
linear elliptic operator L = —A — ul/|z|? is positive and has discrete spectrum if and only if
p < ji = (n —2)%/4. In particular, L has a first eigenvalue, say \;(x), which is a solution to
the problem

Jp, IV = 1 [ 0%/ |2
@€EH(B) fBl ©?

A1(p) =
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Using Pohozaev-type identity we can show that (1) has no solution since Bj is star shaped
with respect to x = 0 and A < 0. Hence we investigate the problem (1) in the confined range
0<A<A(u)and 0 < p < fi.

Using the local Palais-Smale condition, Jannelli proved the following result in [8]:
(i) If 0 < o < fi — 1, then (1) has at least one positive solution u € Hg(2) when 0 < X\ <

A1 (p);
(i) If i — 1 < p < fi, then (1) has at least one positive solution u € H}(2) when

Ae(p) < X < Ai(p), where

. |Vo(x /
A = d
= min |}, Wv / |a:|27

and v = /i + /i — 3

(13) If 1 — 1 < p < [, then (1) has no positive solution for A < A, (u).

This known result shows that any dimension n may be critical for problem (1); now it is
only a matter of how  is close to fi. This type of equations were also studied. Ruiz-Willem
extended the Jannelli’s result in [10]. They proved that (1) has a positive solution not just for
0 < wu < i — 1 but also for 1 < 0. The existence of nodal solutions for (1) was investigated by
Cao-Feng [2] and Choi [5]. In 2003 Cao-Feng [2] obtained the following existence result by
applying the min-max principles:

Letn >7,0< A< A(pu)and 0 < p < i —4 = (n+ 2)(n — 6)/4. Then there exists a pair
of nodal solutions u™ of (1) satisfying

/ v (u) = 0,
B1

where v(u) is the first eigenfunction of the weighted eigenvalue problem

—(Au+ p—s + Mu)v = y[u|* 2v in By, u=0 on JB.

Il2

For the case without Sobolev-Hardy terms in a bounded domain 2 C R"™
~Au=Xu+|u* 2uin Q, u=0 on 9N, (2)

there have been so far many works on the existence and nonexistence of nodal solutions. Espe-
cially, Ceramini-Solimini-Struwe [4] obtained existence results on nodal solutions of (2) such
that if n > 6, then (2) admits a pair of nodal solutions for each 0 < A\ < A\; where \; is the first
eigenvalue of —A(Q) with zero Dirichlet boundary data and moreover, if n > 7, then under
Q) = By, (2) admits a pair of radial solutions with exactly k nodes for any integer k£ > 0. For
the nonexistence of nodal solutions of (2), it is known that if n € {3,4,5,6}, then for small
A > 0 (2) has no nodal radial solution. Wang-Wu [11] considered the nonexistence of nodal
radial solutions for (2) by using Pohozaev’s identity which makes their argument simple.
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In 2001 Bae-Pahk [1] considered the Dirichlet problem
—Au = Nz|*u|?%u + |z|’|ufP"?u in B, uw=0 on dBy, 3)

where p,v > =2, p=2(n+v)/(n—2), 2 < q < 2(n+u)/(n—2) and A is a real parameter.
They extended the previous results for the nonexistence to (3) as follows :

Assume that p,v > —2and 2 < ¢ < (n+2+2v)/(n—2)min{1, (2+x)/(2+4v)}. Then there
exists a constant A > 0 such that for \ € (0, 5\), (3) has no nodal radial solution in HJ (By).

Similarly we investigate the nonexistence of nodal solutions for (1). We prove the following
nonexistence result by using a variant of Pohozaev’s identity :

Theorem 1.1. Letn = 3,4,5,6 and 0 < pu < fi. Then there exists a constant \* > 0 such that
for A € (0,X*), (1) has no nodal radial solution.

Remark Letn > 7,0 < A < A\(u)and it — 1 < p < fi. Then (1) has no nodal radial solu-
tion. We can prove the result adopting a PohoZaev-type argument, in analogy with the proof of
Theorem C in [3] and Theorem 1.C. in [8].

We have the gap between the values of 1 determining the existence and nonexistence of nodal
solutions. We guess that the following is true: Letn > 7,and i — 4 < p < i — 1. Then (1)
has no nodal radial solution for some values of .

2. PRELIMINARIES

In this section, we collect some known facts and present basic observations.
The imbedding of H}(B1) in L?(B;) with respect to the weight || =2 is continuous.

Lemma 2.1. [7] Suppose 0 < u < fiand i = (”7_2)2 Then we have
(1) (Hardy’s inequality)

2
ﬁ/ % S/ |Vul?>, V ue Hy(B);
B1 |.I‘ B1
(7i) The constant [i is optimal.

Now we define the constant S, and investigate the properties of S,,. Let DV2(R") = {u €
L¥ (R™)| |[Vu| € L?(R™)}. For all i € [0, i), we define the constant

Jrn [VulPde — p [, v?/|z*da
27 )2/

S, = inf
" ueni(®n)/(0) (Jgo I

Lemma 2.2. [6] Suppose 0 < p < ji. Then we have
(i) S, is the best constant for the embedding

{ue D2(R™) / (IVul? — i/ |e2)dx < oo} — L¥ (R™);
Rn
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(1) Sy, is independent of any 2 C R™ in the sense that if

5.(Q) = > fQ |Vul|?dz — ufﬂ u?/|z|*dx
g ueD3(9)/{0} (Jo |ul?dz)2/> ’

then S,(?) = S,(R") = S,;;
(i13) When Q@ = R™, S, is achieved by the functions

Vi) = Ce
e (e|z|” /VE + |z|r/ VAW

where v = \/li+ /I — i,y = /i —/Ji — i, and C = (%)\/ﬁ/z, Ve > 0. Moreover,

the functions U.(x) are the only positive radial solutions of —Au — ‘x%u = |[u|* ~2u in R™

To estimate the asymptotic behavior of positive solutions of (1) near an isolated singularity
at r = 0, we need the following Proposition and Lemmas.

Lemma 2.3. [f u is a positive radial solution of (1) in By, 0 < a < 1 and u(a) = 0, then u
goes to oo asr — 0.

Proof. See Lemma 2.14 in [5]. O
Proposition 2.4. Let u be a nonnegative function in Hg(By) satisfying the following inequal-
ity:
VuVe < C [ |z|/(u+ w220/ (=24
By By
forall p € H& (By). If either —2 < v < 0, or —2 < v and w is radial, then u is bounded near
0.

Proof. See Proposition 2.2 in [1]. O
Lemma 2.5. Let v; > —2,1 = 1,2,--- ,k with k € N. If u is a nonnegative function in
H,.(By,) for some a > 0 satisfying
k
/ VuVe < CZ/ |z |Y (u + u(n+2+2r/i)/(n—2))¢ 4)
o i=1 7/ Ba

forall p € H,.(By). Then, u is bounded near 0.
Proof. See Lemma 2.3 in [1]. O

Lemma 2.6. Letn > 3, A\ € R, and 0 < p < pu. If u is a positive radial solution of (1) in
B,, 0 < a < 1andu(a) =0, then

u(p) =0(p™7)

near 0.
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Proof. Let w(p) = p” u. Then w satisfies

v 142/ =
w + + w—I—)\w—l—p 2ty w? ' =0,0<p<a, wla)=0,

In fact, w is a positive radial solution of the equation
=V - (|z|*Vw) = A|z|%w + ]m\_"Jr%Vﬁ_”]w\Q*_Qw in By, w=0 on 0By,

where « = 2 —n+ 2/ — p.
Setv(y) = ((n — 2)/2yf — @) "2/ 2w(x) and |y| = |x|>VE—#/(=2) After a direct calcula-

tion we have

Av = M2 ) -2y in B 0 on 8B

_ — A= = .

v (2m) |y v+ |v[* "%v in By, v on 0B,

Then v satisfies (4) for some constant C'. Therefore, from Lemma 2.5, v is bounded near 0. So
w 1s bounded near 0. ([l

One of our methods for nonexistence of nodal solutions is to use a variant of PohoZaev-
Pucci-Serrin’s identity (see Proposition 1 in [9] with F(z,u,p) = %\pP — F(x,u),h(z) =
z,a = (n—2)/2).

Lemma 2.7. Let f and V. F be continuous on Q1 x R, where F(z,u) fo (x,t)dt. If
u € C?(Q) N CHQ) satisfies Au + f(z,u) = 0 in Q, then

/Q [nF(JU, w) — 2 ; 2uf(a:,u) t - VF(x, u)]

B Ju |Vul? n—2 Ou
= /E)Q[(:B-Vu)n—(x-n) 5 + (z-n)F(z,u) + 5 uan], ®)

where On denotes the exterior unit normal.

Using Lemma 2.7 we can show that (1) has no nontrivial radial solution when A < 0.

Lemma 2.8. Assume thatn > 3, A < 0and 0 < p < p. If u is a nonnegative radial solution
of (1) in Ba,0 < a < 1landu(a) =0, then u= 0 in B,.

Proof. Since u € C?(B,/Bs) for any 0 < § < a, we can apply (5) to u on B,/Bjs. Then, as
6 — 0, it follows from Lemma 2.6 that

1 /

§wna”|u (a)]* = )\/ |u|?. (6)
Ba

When A\ < 0, it follows immediately from (6) that v = 0 in B,. When A = 0, we deduce from

(6) that v/(a) = 0 and then by the uniqueness theorem for initial value problems of ODE we

have u = 0 in B,. O
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3. NONEXISTENCE OF NODAL SOLUTIONS

In this chapter we prove the nonexistence result of nodal solutions to (1) using a variant of
PohoZzaev’s identity.

For a radial solution u € H,(Bj) of (1), equation (1) is written in the form
w, n—1, u 2% -2
'+ ——u' tp—s+Autuf Tu=0, 0<p<1, w(l)=0. (7)
p p

When v > 0in (0,a) and u(a) = 0 for some 0 < a < 1, the derivative of u at the first zero
point a is estimated in terms of A and a. We adopt some argument in [1] and [11] to obtain the
following result:

Lemma 3.1. Letn = 3,4,5,6, A > 0 and 0 < p < fi. If u is a positive radial solution of (1)
in By, 0 < a < 1andu(a) =0, then the derivatives of u at a satisfies

‘u’(a)’ < C)\(n+2)/8a—(n—2)/4 8)
for some C > 0.

Proof. Tt is easy to see that u € C?(B,/B;) for any 0 < § < a. Then the PohoZaev-Pucci-
Serrin’s identity (5) implies

L A
Th@P = [
2 Wn Ba/B5
5n N 1 92 9 1 2 1 2% n—2 1 /

Since u € H}(B,), there exists a sequence {d;} converging to 0 such that 67 (v (5;))% — 0 as
d; — 0. Therefore, using Lemma 2.6, we lead to

1

onald @P =2 [ fuP )
2 Ba

Integrating (1) on B, /Bj to obtain

wn ("1 (8) — a" M (a)) = / (u% + M+ u? Y
B./Bs P

and then letting § — 0, we observe
wnpa U (a)] = / (,uﬁ2 + 4 u? 7). (10)
B, P
Combining (9) and (10) implies

u 2*—1y _ n—2 2
/Ba(ungrAquu )—(2)\a wn/ \u]) . (11)

a

D=
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Since 2 < 2* — 1 forn = 3,4, 5, 6, we obtain by using Holder’s inequality,

/yuP <(/ 1(2*—1)/(2*—3)>(2*—3)/(2*—1)(/ ’u‘Q*—l)Q/(Q*—l)
Ba YN B.

_ (wnan)—(n—ﬁ)/(n+2)</ ‘u|2*_1>2(n—2)/(n+2) (12)

n

a

and by (11) and (12),

u .
(= + M+ u* 1)
/Ba p°

< {2)\wna”*2 (wiﬂl)_(n_ﬁ)/(nw)(/& |u
< [2Awna”*2 (W"Tany(n_ﬁ)/wz){ /B a (u% o UQ*—l)}Z(n_Q)/(n‘FQ)} 1/2

} (n=2/(n+2)

= 2(n—2)/<n+2>} 1/2

= ON2an 202 / (g + Au+u 1)
o« P

Hence we have

p
Then, we have the inequality from (10)

wnan—1|u’(a)‘ < CA(n+2)/8a(3n—2)/4'

/ (M% b+ u2 ) < CAm /B En-2)/4,
B.

Thus we obtain (8) by dividing the above inequality by w,a™ . O
For a radial solution of (7) on an annulus B /B,, we obtain the lower bound of |v'(a)|.

Lemma 3.2. Assume that 0 < A\ < \j(p) and 0 < p < . If v is a radial solution of (7) in
[a, 1] for some 0 < a < 1 satisfying v(a) = v(1) = 0 and v'(a) # 0, then there holds

/ C

> — 13
v (a)| > . (13)
for some C > 0.
Proof. Let |v(p)| attain its maximum at p = 7. For p € [a, 7],
T
/ _ v *_ _
lv (p)| = p! ”/ (,us—2 + Mo + 0¥ s s (14)
)

Considering p = a in (14), we have

!

=11 (a
v (p)| < (p) v (a)]

and

vl < [ W@l < 5 @), (15)
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Let By, = B1/B,. Since v is a solution of (7)

’U2 *
[ vl —u-af = [
Bl,a p Bl,a Bl,a

By the definition of A1 (), we have

(1 - M?u)) /B

Also Hardy’s inequality implies that

2
R R M
Bl,a 'u Bl,a Bl,a Bl,a p

Combining the above two inequalities we obtain

O xg) (=R, woF = ),

Then, by the definition of S;,, we have

(1- )\1)(\#))<1 - %) /BM Vol < /Bl’a f*” < SuQ*/Q(/ yvv|2)2*/2 (16)

Bl,a
/)|vm220
Bl,a

for some C' > 0. Then, we conclude from (16) that for fixed 0 < A < Aq(p) and 0 < p < fi,

/ W > C
Bl,a

for some constant C' > 0 independent of v, which implies immediately that |v(7)| > C for
some C' > 0. Therefore, it follows from (15) that

n—2 n—
lo(T)| >

2 v? 2%
(Vo] —uﬁ) < v|* .

1,a 1l,a

Therefore we obtain

W' (a)] > 26>0

a
for some C' > 0. O

Combining Lemma 3.1 and 3.2, we have the nonexistence for small A > 0.

Proof of Theorem 1.1.

Proof. Let w(zx) be a radial solution of (1). Suppose that w changes sign; w > 0 in B, and
w(a) = 0 for some a with 0 < a < 1 and w # 0 in B;/B,. By u and v, we denote the
restrictions of w(z) to B, and By /B, respectively. Then u (a) = v (a). Since
n—2
4
(8) and (13) lead to a contradiction for small A > 0. O

—(-1) =0,
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