NONEXISTENCE OF NODAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATION WITH SOBOLEV-HARDY TERM

HYEON OCK CHOI ${ }^{1 \dagger}$ AND DAE HYEON PAHK ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Sejong University, Seoul 143-747, South Korea
E-mail address: hyeonok@sejong.ac.kr
${ }^{2}$ Department of Mathematics, Yonsei University, Seoul 120-749, South Korea
E-mail address: dhpahk@yonsei.ac.kr

> ABSTRACT. Let B_{1} be a unit ball in $\mathbf{R}^{n}(n \geq 3)$, and $2^{*}=2 n /(n-2)$ be the critical Sobolev exponent for the embedding $H_{0}^{1}\left(B_{1}\right) \hookrightarrow L^{2^{*}}\left(B_{1}\right)$. By using a variant of Pohozǎev's identity, we prove the nonexistence of nodal solutions for the Dirichlet problem $-\Delta u-\mu \frac{u}{|x|^{2}}=$ $\lambda u+|u|^{2^{*}-2} u$ in $B_{1}, \quad u=0$ on ∂B_{1} for suitable positive numbers μ and ν.

1. INTRODUCTION

In this paper we deal with the nonexistence of nodal solutions(changing-sign solutions) for the following problem

$$
\left\{\begin{array}{rlr}
-\Delta u-\mu \frac{u}{|x|^{2}} & =\lambda u+|u|^{2^{*}-2} u & \text { in } \quad B_{1} \tag{1}\\
u & =0 \quad \text { on } \quad \partial B_{1}, &
\end{array}\right.
$$

where B_{1} is a unit ball in $\mathbf{R}^{n}(n \geq 3)$, and $2^{*}=2 n /(n-2)$.
In recent years, much attention has been paid to the existence of nontrivial solutions to (1) where $0 \leq \mu<\bar{\mu}=\left(\frac{n-2}{2}\right)^{2}, \lambda \in \mathbf{R}$. The well-known Hardy's inequality implies that the linear elliptic operator $L=-\Delta-\mu I /|x|^{2}$ is positive and has discrete spectrum if and only if $\mu<\bar{\mu}=(n-2)^{2} / 4$. In particular, L has a first eigenvalue, say $\lambda_{1}(\mu)$, which is a solution to the problem

$$
\lambda_{1}(\mu)=\min _{\varphi \in H_{0}^{1}\left(B_{1}\right)} \frac{\int_{B_{1}}|\nabla \varphi|^{2}-\mu \int_{B_{1}} \varphi^{2} /|x|^{2}}{\int_{B_{1}} \varphi^{2}} .
$$

Received by the editors November 14, 2008.
2000 Mathematics Subject Classification. 35J25.
Key words and phrases. Semilinear Elliptic equation, Nodal Solution, Nonexistence, Pohožaev-Pucci-Serrin Identity, Hardy's inequality.

The first author's work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD)(KRF-2005-070-C00010).
${ }^{\dagger}$ Corresponding author.

Using Pohožaev-type identity we can show that (1) has no solution since B_{1} is star shaped with respect to $x=0$ and $\lambda \leq 0$. Hence we investigate the problem (1) in the confined range $0<\lambda<\lambda_{1}(\mu)$ and $0 \leq \mu<\bar{\mu}$.

Using the local Palais-Smale condition, Jannelli proved the following result in [8]:
(i) If $0<\mu \leq \bar{\mu}-1$, then (1) has at least one positive solution $u \in H_{0}^{1}(\Omega)$ when $0<\lambda<$ $\lambda_{1}(\mu)$;
(ii) If $\bar{\mu}-1<\mu<\bar{\mu}$, then (1) has at least one positive solution $u \in H_{0}^{1}(\Omega)$ when $\lambda_{*}(\mu)<\lambda<\lambda_{1}(\mu)$, where

$$
\lambda_{*}(\mu)=\min _{\varphi \in H_{0}^{1}(\Omega)}\left[\int_{\Omega} \frac{|\nabla \varphi(x)|^{2}}{|x|^{2 \gamma}} d x / \int_{\Omega} \frac{\varphi^{2}(x)}{|x|^{2 \gamma}} d x\right]
$$

and $\gamma=\sqrt{\bar{\mu}}+\sqrt{\bar{\mu}-\mu}$;
(iii) If $\bar{\mu}-1<\mu<\bar{\mu}$, then (1) has no positive solution for $\lambda \leq \lambda_{*}(\mu)$.

This known result shows that any dimension n may be critical for problem (1); now it is only a matter of how μ is close to $\bar{\mu}$. This type of equations were also studied. Ruiz-Willem extended the Jannelli's result in [10]. They proved that (1) has a positive solution not just for $0 \leq \mu<\bar{\mu}-1$ but also for $\mu<0$. The existence of nodal solutions for (1) was investigated by Cao-Feng [2] and Choi [5]. In 2003 Cao-Feng [2] obtained the following existence result by applying the min-max principles:
Let $n \geq 7,0<\lambda<\lambda_{1}(\mu)$ and $0<\mu<\bar{\mu}-4=(n+2)(n-6) / 4$. Then there exists a pair of nodal solutions $u^{ \pm}$of (1) satisfying

$$
\int_{B_{1}}|u|^{2^{*}-2} u v(u)=0
$$

where $v(u)$ is the first eigenfunction of the weighted eigenvalue problem

$$
-\left(\Delta u+\mu \frac{u}{|x|^{2}}+\lambda u\right) v=\gamma|u|^{2^{*}-2} v \text { in } B_{1}, \quad u=0 \text { on } \partial B_{1}
$$

For the case without Sobolev-Hardy terms in a bounded domain $\Omega \subset \mathbf{R}^{n}$

$$
\begin{equation*}
-\Delta u=\lambda u+|u|^{2^{*}-2} u \text { in } \Omega, \quad u=0 \quad \text { on } \quad \partial \Omega, \tag{2}
\end{equation*}
$$

there have been so far many works on the existence and nonexistence of nodal solutions. Especially, Ceramini-Solimini-Struwe [4] obtained existence results on nodal solutions of (2) such that if $n \geq 6$, then (2) admits a pair of nodal solutions for each $0<\lambda<\lambda_{1}$ where λ_{1} is the first eigenvalue of $-\Delta(\Omega)$ with zero Dirichlet boundary data and moreover, if $n \geq 7$, then under $\Omega=B_{1}$, (2) admits a pair of radial solutions with exactly k nodes for any integer $k \geq 0$. For the nonexistence of nodal solutions of (2), it is known that if $n \in\{3,4,5,6\}$, then for small $\lambda>0$ (2) has no nodal radial solution. Wang-Wu [11] considered the nonexistence of nodal radial solutions for (2) by using Pohožaev's identity which makes their argument simple.

In 2001 Bae-Pahk [1] considered the Dirichlet problem

$$
\begin{equation*}
-\Delta u=\lambda|x|^{\mu}|u|^{q-2} u+|x|^{\nu}|u|^{p-2} u \text { in } B_{1}, \quad u=0 \quad \text { on } \partial B_{1} \tag{3}
\end{equation*}
$$

where $\mu, \nu>-2, p=2(n+\nu) /(n-2), 2 \leq q<2(n+\mu) /(n-2)$ and λ is a real parameter. They extended the previous results for the nonexistence to (3) as follows :
Assume that $\mu, \nu>-2$ and $2 \leq q \leq(n+2+2 \nu) /(n-2) \min \{1,(2+\mu) /(2+\nu)\}$. Then there exists a constant $\tilde{\lambda}>0$ such that for $\lambda \in(0, \tilde{\lambda})$, (3) has no nodal radial solution in $H_{0}^{1}\left(B_{1}\right)$.

Similarly we investigate the nonexistence of nodal solutions for (1). We prove the following nonexistence result by using a variant of Pohožaev's identity :

Theorem 1.1. Let $n=3,4,5,6$ and $0<\mu<\bar{\mu}$. Then there exists a constant $\lambda^{*}>0$ such that for $\lambda \in\left(0, \lambda^{*}\right)$, (1) has no nodal radial solution.

Remark Let $n \geq 7,0<\lambda \leq \lambda_{*}(\mu)$ and $\bar{\mu}-1<\mu<\bar{\mu}$. Then (1) has no nodal radial solution. We can prove the result adopting a Pohožaev-type argument, in analogy with the proof of Theorem C in [3] and Theorem 1.C. in [8].

We have the gap between the values of μ determining the existence and nonexistence of nodal solutions. We guess that the following is true: Let $n \geq 7$, and $\bar{\mu}-4 \leq \mu \leq \bar{\mu}-1$. Then (1) has no nodal radial solution for some values of λ.

2. PRELIMINARIES

In this section, we collect some known facts and present basic observations.
The imbedding of $H_{0}^{1}\left(B_{1}\right)$ in $L^{2}\left(B_{1}\right)$ with respect to the weight $|x|^{-2}$ is continuous.
Lemma 2.1. [7] Suppose $0 \leq \mu<\bar{\mu}$ and $\bar{\mu}=\left(\frac{n-2}{2}\right)^{2}$. Then we have
(i) (Hardy's inequality)

$$
\bar{\mu} \int_{B_{1}} \frac{|u|^{2}}{|x|^{2}} \leq \int_{B_{1}}|\nabla u|^{2}, \quad \forall u \in H_{0}^{1}\left(B_{1}\right)
$$

(ii) The constant $\bar{\mu}$ is optimal.

Now we define the constant S_{μ} and investigate the properties of S_{μ}. Let $D^{1,2}\left(\mathbf{R}^{n}\right)=\{u \in$ $\left.L^{2^{*}}\left(\mathbf{R}^{n}\right)| | \nabla u \mid \in L^{2}\left(\mathbf{R}^{n}\right)\right\}$. For all $\mu \in[0, \bar{\mu})$, we define the constant

$$
S_{\mu}:=\inf _{u \in D_{1}^{2}\left(\mathbf{R}^{n}\right) /\{0\}} \frac{\int_{\mathbf{R}^{n}}|\nabla u|^{2} d x-\mu \int_{\mathbf{R}^{n}} u^{2} /|x|^{2} d x}{\left(\int_{\mathbf{R}^{n}}|u|^{2^{*}} d x\right)^{2 / 2^{*}}} .
$$

Lemma 2.2. [6] Suppose $0 \leq \mu<\bar{\mu}$. Then we have
(i) S_{μ} is the best constant for the embedding

$$
\left\{u \in D^{1,2}\left(\mathbf{R}^{n}\right): \int_{\mathbf{R}^{n}}\left(|\nabla u|^{2}-\mu u^{2} /|x|^{2}\right) d x<\infty\right\} \hookrightarrow L^{2^{*}}\left(\mathbf{R}^{n}\right)
$$

(ii) S_{μ} is independent of any $\Omega \subset \mathbf{R}^{n}$ in the sense that if

$$
S_{\mu}(\Omega)=\inf _{u \in D_{1}^{2}(\Omega) /\{0\}} \frac{\int_{\Omega}|\nabla u|^{2} d x-\mu \int_{\Omega} u^{2} /|x|^{2} d x}{\left(\int_{\Omega}|u|^{2^{*}} d x\right)^{2 / 2^{*}}}
$$

then $S_{\mu}(\Omega)=S_{\mu}\left(\mathbf{R}^{n}\right)=S_{\mu}$;
(iii) When $\Omega=\mathbf{R}^{n}, S_{\mu}$ is achieved by the functions

$$
U_{\epsilon}(x)=\frac{C_{\epsilon}}{\left(\epsilon|x|^{\gamma^{\prime} / \sqrt{\mu}}+|x|^{\gamma / \sqrt{\mu}}\right) \sqrt{\mu}}
$$

where $\gamma=\sqrt{\bar{\mu}}+\sqrt{\bar{\mu}-\mu}, \gamma^{\prime}=\sqrt{\bar{\mu}}-\sqrt{\bar{\mu}-\mu}$, and $C_{\epsilon}=\left(\frac{4 \epsilon n(\bar{\mu}-\mu)}{n-2}\right)^{\sqrt{\mu} / 2}, \forall \epsilon>0$. Moreover, the functions $U_{\epsilon}(x)$ are the only positive radial solutions of $-\Delta u-\frac{\mu}{|x|^{2}} u=|u|^{2^{*}-2} u$ in \mathbf{R}^{n}.

To estimate the asymptotic behavior of positive solutions of (1) near an isolated singularity at $r=0$, we need the following Proposition and Lemmas.

Lemma 2.3. If u is a positive radial solution of (1) in $B_{a}, 0<a \leq 1$ and $u(a)=0$, then u goes to ∞ as $r \rightarrow 0$.

Proof. See Lemma 2.14 in [5].
Proposition 2.4. Let u be a nonnegative function in $H_{0}^{1}\left(B_{1}\right)$ satisfying the following inequality:

$$
\int_{B_{1}} \nabla u \nabla \phi \leq C \int_{B_{1}}|x|^{\nu}\left(u+u^{(n+2+2 \nu) /(n-2)}\right) \phi
$$

for all $\phi \in H_{0}^{1}\left(B_{1}\right)$. If either $-2<\nu \leq 0$, or $-2<\nu$ and u is radial, then u is bounded near 0.

Proof. See Proposition 2.2 in [1].
Lemma 2.5. Let $\nu_{i}>-2, i=1,2, \cdots, k$ with $k \in \mathbf{N}$. If u is a nonnegative function in $H_{r}\left(B_{a}\right)$ for some $a>0$ satisfying

$$
\begin{equation*}
\int_{B_{a}} \nabla u \nabla \phi \leq C \sum_{i=1}^{k} \int_{B_{a}}|x|^{\nu_{i}}\left(u+u^{\left(n+2+2 \nu_{i}\right) /(n-2)}\right) \phi \tag{4}
\end{equation*}
$$

for all $\phi \in H_{r}\left(B_{a}\right)$. Then, u is bounded near 0 .
Proof. See Lemma 2.3 in [1].
Lemma 2.6. Let $n \geq 3, \lambda \in \mathbf{R}$, and $0<\mu<\bar{\mu}$. If u is a positive radial solution of (1) in $B_{a}, 0<a<1$ and $u(a)=0$, then

$$
u(\rho)=O\left(\rho^{-\gamma^{\prime}}\right)
$$

near 0.

Proof. Let $w(\rho)=\rho^{\gamma^{\prime}} u$. Then w satisfies

$$
w^{\prime \prime}+\frac{1+2 \sqrt{\bar{\mu}-\mu}}{\rho} w^{\prime}+\lambda w+\rho^{-2+\frac{4}{n-2} \sqrt{\bar{\mu}-\mu}} w^{2^{*}-1}=0,0<\rho<a, \quad w(a)=0
$$

In fact, w is a positive radial solution of the equation

$$
-\nabla \cdot\left(|x|^{\alpha} \nabla w\right)=\lambda|x|^{\alpha} w+|x|^{-n+\frac{2 n}{n-2} \sqrt{\bar{\mu}-\mu}}|w|^{2^{*}-2} w \quad \text { in } B_{a}, \quad w=0 \text { on } \partial B_{a}
$$

where $\alpha=2-n+2 \sqrt{\bar{\mu}-\mu}$.
Set $v(y)=((n-2) / 2 \sqrt{\bar{\mu}-\mu})^{(n-2) / 2} w(x)$ and $|y|=|x|^{2 \sqrt{\bar{\mu}-\mu} /(n-2)}$. After a direct calculation we have

$$
-\Delta v=\lambda\left(\frac{n-2}{2 \sqrt{\bar{\mu}-\mu}}\right)^{2}|y|^{\frac{(n-2-2 \sqrt{\mu-\mu})}{\sqrt{\bar{\mu}-\mu}}} v+|v|^{2^{*}-2} v \text { in } B_{a}, \quad v=0 \text { on } \partial B_{a}
$$

Then v satisfies (4) for some constant C. Therefore, from Lemma 2.5, v is bounded near 0 . So w is bounded near 0 .

One of our methods for nonexistence of nodal solutions is to use a variant of Pohožaev-Pucci-Serrin's identity (see Proposition 1 in [9] with $\mathcal{F}(x, u, p)=\frac{1}{2}|p|^{2}-F(x, u), h(x)=$ $x, a=(n-2) / 2)$.

Lemma 2.7. Let f and $\nabla_{x} F$ be continuous on $\bar{\Omega} \times \mathbf{R}$, where $F(x, u)=\int_{0}^{u} f(x, t) d t$. If $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfies $\Delta u+f(x, u)=0$ in Ω, then

$$
\begin{align*}
& \int_{\Omega}\left[n F(x, u)-\frac{n-2}{2} u f(x, u)+x \cdot \nabla_{x} F(x, u)\right] \\
= & \int_{\partial \Omega}\left[(x \cdot \nabla u) \frac{\partial u}{\partial \mathbf{n}}-(x \cdot \mathbf{n}) \frac{|\nabla u|^{2}}{2}+(x \cdot \mathbf{n}) F(x, u)+\frac{n-2}{2} u \frac{\partial u}{\partial \mathbf{n}}\right], \tag{5}
\end{align*}
$$

where $\partial \mathbf{n}$ denotes the exterior unit normal.

Using Lemma 2.7 we can show that (1) has no nontrivial radial solution when $\lambda \leq 0$.
Lemma 2.8. Assume that $n \geq 3, \lambda \leq 0$ and $0<\mu<\bar{\mu}$. If u is a nonnegative radial solution of (1) in $B_{a}, 0<a \leq 1$ and $u(a)=0$, then $u \equiv 0$ in B_{a}.
Proof. Since $u \in C^{2}\left(B_{a} / B_{\delta}\right)$ for any $0<\delta<a$, we can apply (5) to u on B_{a} / B_{δ}. Then, as $\delta \rightarrow 0$, it follows from Lemma 2.6 that

$$
\begin{equation*}
\frac{1}{2} \omega_{n} a^{n}\left|u^{\prime}(a)\right|^{2}=\lambda \int_{B_{a}}|u|^{2} \tag{6}
\end{equation*}
$$

When $\lambda<0$, it follows immediately from (6) that $u \equiv 0$ in B_{a}. When $\lambda=0$, we deduce from (6) that $u^{\prime}(a)=0$ and then by the uniqueness theorem for initial value problems of ODE we have $u \equiv 0$ in B_{a}.

3. NONEXISTENCE OF NODAL SOLUTIONS

In this chapter we prove the nonexistence result of nodal solutions to (1) using a variant of Pohožaev's identity.

For a radial solution $u \in H_{r}\left(B_{1}\right)$ of (1), equation (1) is written in the form

$$
\begin{equation*}
u^{\prime \prime}+\frac{n-1}{\rho} u^{\prime}+\mu \frac{u}{\rho^{2}}+\lambda u+|u|^{2^{*}-2} u=0, \quad 0<\rho<1, \quad u(1)=0 \tag{7}
\end{equation*}
$$

When $u>0$ in $(0, a)$ and $u(a)=0$ for some $0<a<1$, the derivative of u at the first zero point a is estimated in terms of λ and a. We adopt some argument in [1] and [11] to obtain the following result:

Lemma 3.1. Let $n=3,4,5,6, \lambda>0$ and $0<\mu<\bar{\mu}$. If u is a positive radial solution of (1) in $B_{a}, 0<a<1$ and $u(a)=0$, then the derivatives of u at a satisfies

$$
\begin{equation*}
\left|u^{\prime}(a)\right| \leq C \lambda^{(n+2) / 8} a^{-(n-2) / 4} \tag{8}
\end{equation*}
$$

for some $C>0$.
Proof. It is easy to see that $u \in C^{2}\left(B_{a} / B_{\delta}\right)$ for any $0<\delta<a$. Then the Pohožaev-PucciSerrin's identity (5) implies

$$
\begin{aligned}
\frac{a^{n}}{2}\left|u^{\prime}(a)\right|^{2} & =\frac{\lambda}{\omega_{n}} \int_{B_{a} / B_{\delta}}|u|^{2} \\
& +\left[\frac{\delta^{n}}{2}\left(u^{\prime}\right)^{2}+\frac{1}{2} \mu \delta^{n-2} u^{2}+\frac{1}{2} \lambda \delta^{n} u^{2}+\frac{1}{2^{*}} \delta^{n}|u|^{2^{*}}+\frac{n-2}{2} \delta^{n-1} u u^{\prime}\right]_{r=\delta}
\end{aligned}
$$

Since $u \in H_{0}^{1}\left(B_{a}\right)$, there exists a sequence $\left\{\delta_{i}\right\}$ converging to 0 such that $\delta_{i}^{n}\left(u^{\prime}\left(\delta_{i}\right)\right)^{2} \rightarrow 0$ as $\delta_{i} \rightarrow 0$. Therefore, using Lemma 2.6, we lead to

$$
\begin{equation*}
\frac{1}{2} \omega_{n} a^{n}\left|u^{\prime}(a)\right|^{2}=\lambda \int_{B_{a}}|u|^{2} \tag{9}
\end{equation*}
$$

Integrating (1) on B_{a} / B_{δ} to obtain

$$
\omega_{n}\left(\delta^{n-1} u^{\prime}(\delta)-a^{n-1} u^{\prime}(a)\right)=\int_{B_{a} / B_{\delta}}\left(\mu \frac{u}{\rho^{2}}+\lambda u+u^{2^{*}-1}\right)
$$

and then letting $\delta \rightarrow 0$, we observe

$$
\begin{equation*}
\omega_{n} a^{n-1}\left|u^{\prime}(a)\right|=\int_{B_{a}}\left(\mu \frac{u}{\rho^{2}}+\lambda u+u^{2^{*}-1}\right) \tag{10}
\end{equation*}
$$

Combining (9) and (10) implies

$$
\begin{equation*}
\int_{B_{a}}\left(\mu \frac{u}{\rho^{2}}+\lambda u+u^{2^{*}-1}\right)=\left(2 \lambda a^{n-2} \omega_{n} \int_{B_{a}}|u|^{2}\right)^{\frac{1}{2}} \tag{11}
\end{equation*}
$$

Since $2 \leq 2^{*}-1$ for $n=3,4,5,6$, we obtain by using Hölder's inequality,

$$
\begin{align*}
\int_{B_{a}}|u|^{2} & \leq\left(\int_{B_{a}} 1^{\left(2^{*}-1\right) /\left(2^{*}-3\right)}\right)^{\left(2^{*}-3\right) /\left(2^{*}-1\right)}\left(\int_{B_{a}}|u|^{2^{*}-1}\right)^{2 /\left(2^{*}-1\right)} \\
& =\left(\frac{\omega_{n}}{n} a^{n}\right)^{-(n-6) /(n+2)}\left(\int_{B_{a}}|u|^{2^{*}-1}\right)^{2(n-2) /(n+2)} \tag{12}
\end{align*}
$$

and by (11) and (12),

$$
\begin{aligned}
& \int_{B_{a}}\left(\mu \frac{u}{\rho^{2}}+\lambda u+u^{2^{*}-1}\right) \\
\leq & {\left[2 \lambda \omega_{n} a^{n-2}\left(\frac{\omega_{n} a^{n}}{n}\right)^{-(n-6) /(n+2)}\left(\int_{B_{a}}|u|^{2^{*}-1}\right)^{2(n-2) /(n+2)}\right]^{1 / 2} } \\
\leq & {\left[2 \lambda \omega_{n} a^{n-2}\left(\frac{\omega_{n} a^{n}}{n}\right)^{-(n-6) /(n+2)}\left\{\int_{B_{a}}\left(\mu \frac{u}{\rho^{2}}+\lambda u+u^{2^{*}-1}\right)\right\}^{2(n-2) /(n+2)}\right]^{1 / 2} } \\
= & C \lambda^{1 / 2} a^{(3 n-2) /(n+2)}\left[\int_{B_{a}}\left(\mu \frac{u}{\rho^{2}}+\lambda u+u^{2^{*}-1}\right)\right]^{(n-2) /(n+2)}
\end{aligned}
$$

Hence we have

$$
\int_{B_{a}}\left(\mu \frac{u}{\rho^{2}}+\lambda u+u^{2^{*}-1}\right) \leq C \lambda^{(n+2) / 8} a^{(3 n-2) / 4}
$$

Then, we have the inequality from (10)

$$
\omega_{n} a^{n-1}\left|u^{\prime}(a)\right| \leq C \lambda^{(n+2) / 8} a^{(3 n-2) / 4}
$$

Thus we obtain (8) by dividing the above inequality by $\omega_{n} a^{n-1}$.
For a radial solution of (7) on an annulus B_{1} / B_{a}, we obtain the lower bound of $\left|v^{\prime}(a)\right|$.
Lemma 3.2. Assume that $0<\lambda<\lambda_{1}(\mu)$ and $0<\mu<\bar{\mu}$. If v is a radial solution of (7) in $[a, 1]$ for some $0<a<1$ satisfying $v(a)=v(1)=0$ and $v^{\prime}(a) \neq 0$, then there holds

$$
\begin{equation*}
\left|v^{\prime}(a)\right| \geq \frac{C}{a} \tag{13}
\end{equation*}
$$

for some $C>0$.
Proof. Let $|v(\rho)|$ attain its maximum at $\rho=\tau$. For $\rho \in[a, \tau]$,

$$
\begin{equation*}
\left|v^{\prime}(\rho)\right|=\rho^{1-n} \int_{\rho}^{\tau}\left(\mu \frac{v}{s^{2}}+\lambda v+v^{2^{*}-1}\right) s^{n-1} d s \tag{14}
\end{equation*}
$$

Considering $\rho=a$ in (14), we have

$$
\left|v^{\prime}(\rho)\right| \leq\left(\frac{a}{\rho}\right)^{n-1}\left|v^{\prime}(a)\right|
$$

and

$$
\begin{equation*}
|v(\tau)| \leq \int_{a}^{\tau}\left|v^{\prime}(\rho)\right| d \rho \leq \frac{a}{n-2}\left|v^{\prime}(a)\right| \tag{15}
\end{equation*}
$$

Let $B_{1, a}=B_{1} / B_{a}$. Since v is a solution of (7)

$$
\int_{B_{1, a}}\left(|\nabla v|^{2}-\mu \frac{v^{2}}{\rho^{2}}\right)-\lambda \int_{B_{1, a}} v^{2}=\int_{B_{1, a}}|v|^{2^{*}}
$$

By the definition of $\lambda_{1}(\mu)$, we have

$$
\left(1-\frac{\lambda}{\lambda_{1}(\mu)}\right) \int_{B_{1, a}}\left(|\nabla v|^{2}-\mu \frac{v^{2}}{\rho^{2}}\right) \leq \int_{B_{1, a}}|v|^{2^{*}}
$$

Also Hardy's inequality implies that

$$
\int_{B_{1, a}}|\nabla v|^{2}-\frac{\mu}{\bar{\mu}} \int_{B_{1, a}}|\nabla v|^{2} \leq \int_{B_{1, a}}|\nabla v|^{2}-\mu \int_{B_{1, a}} \frac{v^{2}}{\rho^{2}}
$$

Combining the above two inequalities we obtain

$$
\left(1-\frac{\lambda}{\lambda_{1}(\mu)}\right)\left(1-\frac{\mu}{\bar{\mu}}\right) \int_{B_{1, a}}|\nabla v|^{2} \leq \int_{B_{1, a}}|v|^{2^{*}}
$$

Then, by the definition of S_{μ}, we have

$$
\begin{equation*}
\left(1-\frac{\lambda}{\lambda_{1}(\mu)}\right)\left(1-\frac{\mu}{\bar{\mu}}\right) \int_{B_{1, a}}|\nabla v|^{2} \leq \int_{B_{1, a}}|v|^{2^{*}} \leq S_{\mu}^{-2^{*} / 2}\left(\int_{B_{1, a}}|\nabla v|^{2}\right)^{2^{*} / 2} \tag{16}
\end{equation*}
$$

Therefore we obtain

$$
\int_{B_{1, a}}|\nabla v|^{2} \geq C
$$

for some $C>0$. Then, we conclude from (16) that for fixed $0<\lambda<\lambda_{1}(\mu)$ and $0<\mu<\bar{\mu}$,

$$
\int_{B_{1, a}}|v|^{2^{*}}>C
$$

for some constant $C>0$ independent of v, which implies immediately that $|v(\tau)|>C$ for some $C>0$. Therefore, it follows from (15) that

$$
\left|v^{\prime}(a)\right| \geq \frac{n-2}{a}|v(\tau)| \geq \frac{n-2}{a} C>0
$$

for some $C>0$.
Combining Lemma 3.1 and 3.2, we have the nonexistence for small $\lambda>0$.

Proof of Theorem 1.1.

Proof. Let $w(x)$ be a radial solution of (1). Suppose that w changes sign; $w>0$ in B_{a} and $w(a)=0$ for some a with $0<a<1$ and $w \not \equiv 0$ in B_{1} / B_{a}. By u and v, we denote the restrictions of $w(x)$ to B_{a} and B_{1} / B_{a} respectively. Then $u^{\prime}(a)=v^{\prime}(a)$. Since

$$
-\frac{n-2}{4}-(-1) \geq 0
$$

(8) and (13) lead to a contradiction for small $\lambda>0$.

REFERENCES

[1] S. Bae and D. H. Pahk, Nonexistence of nodal solutions of nonlinear elliptic equations, Nonlinear Anal. TMA, 46 (2001), 1111-1122.
[2] D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Differential Equations, 193 (2003), 424-434.
[3] H. Brezis and L. Nirenberg, Positive solutions of nonlinear equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
[4] G. Ceramini, S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal., 69 (1986), 289-306.
[5] H. O. Choi, On nodal solutions of nonlinear elliptic equations with singular terms, Yonsei University, Dissertation (2003).
[6] A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Differential Equations, 177 (2001), 494-522.
[7] G. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, Cambridge, UK, (1934).
[8] E. Jannelli, The role played by space dimension in elliptic critical problems, J. Differential Equations, 156 (1999), 407-426.
[9] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35(3) (1986), 681-703.
[10] D. Ruiz, and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Differential Equations, 190(2) (2003), 524-438
[11] X. Wang and S. Wu, Some notes on radial solutions of $\Delta u+|u|^{p-1} u+\lambda u=0$, Chinese J. Contemporary Math., 12 (1991), 251-258.

