• Title/Summary/Keyword: semiconductor simulation

Search Result 1,092, Processing Time 0.028 seconds

A Study on the/ Correlation Between Board Level Drop Test Experiment and Simulation

  • Kang, Tae-Min;Lee, Dae-Woong;Hwang, You-Kyung;Chung, Qwan-Ho;Yoo, Byun-Kwang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2011
  • Recently, board level solder joint reliability performance of IC packages during drop impact becomes a great concern to semiconductor and electronic product manufacturers. The handheld electronic products are prone to being dropped during their useful service life because of their size and weight. The IC packages are susceptible to solder joint failures, induced by a combination of printed circuit board (PCB) bending and mechanical shock during impact. The board level drop testing is an effective method to characterize the solder joint reliability performance of miniature handheld products. In this paper, applying the JEDEC (JESD22-B111) standard present a finite element modeling of the FBGA. The simulation results revealed that maximum stress was located at the outermost solder ball in the PCB or IC package side, which consisted well with the location of crack initiation observed in the failure analysis after drop reliability tests.

A Milestone Generation Algorithm for Efficient Control of FAB Process in a Semiconductor Factory (반도체 FAB 공정의 효율적인 통제를 위한 생산 기준점 산출 알고리듬)

  • Baek, Jong-Kwan;Baek, Jun-Geol;Kim, Sung-Shick
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2002
  • Semiconductor manufacturing has been emerged as a highly competitive but profitable business. Accordingly it becomes very important for semiconductor manufacturing companies to meet customer demands at the right time, in order to keep the leading edge in the world market. However, due-date oriented production is very difficult task because of the complex job flows with highly resource conflicts in fabrication shop called FAB. Due to its cyclic manufacturing feature of products, to be completed, a semiconductor product is processed repeatedly as many times as the number of the product manufacturing cycles in FAB, and FAB processes of individual manufacturing cycles are composed with similar but not identical unit processes. In this paper, we propose a production scheduling and control scheme that is designed specifically for semiconductor scheduling environment (FAB). The proposed scheme consists of three modules: simulation module, cycle due-date estimation module, and dispatching module. The fundamental idea of the scheduler is to introduce the due-date for each cycle of job, with which the complex job flows in FAB can be controlled through a simple scheduling rule such as the minimum slack rule, such that the customer due-dates are maximally satisfied. Through detailed simulation, the performance of a cycle due-date based scheduler has been verified.

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.439-443
    • /
    • 2019
  • To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction in a CZT pixelated semiconductor gamma camera system. The gamma camera system simulated is a CZT pixelated semiconductor detector with a pixel-matched parallel-hole collimator and the spatial resolution phatnom was designed with the Geant4 Application for Tomography Emission (GATE). In addition, a noise reduction algorithm with a median filter using an improved thresholding method is developed and we applied our proposed algorithm to an acquired spatial resolution phantom image. According to the results, the proposed median filter improved the noise characteristics compared to a conventional median filter. In particular, the average for normalized noise power spectrum, contrast to noise ratio, and coefficient of variation results using the proposed median filter were 10, 1.11, and 1.19 times better than results using conventional median filter, respectively. In conclusion, our results show that the proposed median filter using improved the thresholding method results in high imaging performance when applied in a CZT semiconductor gamma camera system.

VT-Modulation of Planar Tunnel Field-Effect Transistors with Ground-Plane under Ultrathin Body and Bottom Oxide

  • Sun, Min-Chul;Kim, Hyun Woo;Kim, Hyungjin;Kim, Sang Wan;Kim, Garam;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.139-145
    • /
    • 2014
  • Control of threshold voltage ($V_T$) by ground-plane (GP) technique for planar tunnel field-effect transistor (TFET) is studied for the first time using TCAD simulation method. Although GP technique appears to be similarly useful for the TFET as for the metal-oxide-semiconductor field-effect transistor (MOSFET), some unique behaviors such as the small controllability under weak ground doping and dependence on the dopant polarity are also observed. For $V_T$-modulation larger than 100 mV, heavy ground doping over $1{\times}10^{20}cm^{-3}$ or back biasing scheme is preferred in case of TFETs. Polarity dependence is explained with a mechanism similar to the punch-through of MOSFETs. In spite of some minor differences, this result shows that both MOSFETs and TFETs can share common $V_T$-control scheme when these devices are co-integrated.

Numerical Simulation of Deposition Chamber for Aerosol Nanoparticles Upward 300 mm Wafer (300 mm 웨이퍼 위의 에어로졸 나노 입자의 증착 장비 개발을 위한 수치 해석적 연구)

  • Ahn, Kang-Ho;Ahn, Jin-Hong;Lee, Kwan-Soo;Lim, Kwang-Ok;Kang, Yoon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.1 s.10
    • /
    • pp.49-53
    • /
    • 2005
  • The nanoparticle deposition chamber, which is used for quantum dot semiconductor memory applications, is designed by means of numerical simulation. In this research, the numerical simulations for deposition chamber were performed by commercial software, FLUENT. The deposition of nanoparticles is calculated by diffusion force, thermophoresis and electrophoresis of particles. As a results, when the diffusion force was considered, the most of particles deposited in the wall of deposition chamber. But as considering thermophoresis and electrophoresis of particles, the particles were deposited wafer surface, perfectly.

  • PDF

Simulation of Quantum Effects in the Nano-scale Semiconductor Device

  • Jin, Seong-Hoon;Park, Young-June;Min, Hong-Shick
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.1
    • /
    • pp.32-40
    • /
    • 2004
  • An extension of the density-gradient model to include the non-local transport effect is presented. The governing equations can be derived from the first three moments of the Wigner distribution function with some approximations. A new nonlinear discretization scheme is applied to the model to reduce the discretization error. We also developed a new boundary condition for the $Si/SiO_2$ interface that includes the electron wavefunction penetration into the oxide to obtain more accurate C-V characteristics. We report the simulation results of a 25-nm metal-oxide-semiconductor field-effect transistor (MOSFET) device.

Simulation of Miniaturized n-MOSFET based Non-Isothermal Non-Equilibrium Transport Model (디바이스 시뮬레이션 기술을 이용한 미세 n-MOSFET의 비등온 비형형장에 있어서의 특성해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.329-337
    • /
    • 2001
  • This simulator is developed for the analysis of a MOSFET based on Thermally Coupled Energy Transport Model(TCETM). The simulator has the ability to calculate not only stationary characteristics but also non - stationary characteristics of a MOSFET. It solves basic semiconductor devices equations including Possion equation, current continuity equations for electrons and holes, energy balance equation for electrons and heat flow equation, using finite difference method. The conventional semiconductor device simulation technique, based on the Drift-Diffusion Model (DDM), neglects the thermal and other energy-related properties of a miniaturized device. I, therefore, developed a simulator based on the Thermally Coupled Energy Transport Model (TCETM) which treats not only steady-state but also transient phenomena of such a small-size MOSFET. In particular, the present paper investigates the breakdown characteristics in transient conditions. As a result, we found that the breakdown voltage has been largely underestimated by the DDM in transient conditions.

  • PDF

Electrical characteristics simulation of thyristor devices for HVDC transmission (HVDC용 사이리스터 소자의 전기적 특성 simulation 연구)

  • Kim, Sang-Cheol;Seo, Kil-Soo;Kim, Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1559-1561
    • /
    • 2003
  • In northeast Asia, there will be several important HVDC transmission lines to be established in Korea and China for perspective electric network market. 5500V 4-inches High voltage thyristor can be used in the DC transmission and distribution of electric power system. In this application, many thyristors are connected in series for each thyristor valves. Therefore, the required low reverse-recovery charge QRR and low on-state voltage drop $V_{TM}$ for such thyristor is necessary to this application. In our work, the on-state and off-state voltage performance was simulated by commercial simulation software.

  • PDF

Modeling and Thermal Characteristic Simulation of Power Semiconductor Device (IGBT) (전력용 반도체소자(IGBT)의 모델링에 의한 열적특성 시뮬레이션)

  • 서영수;백동현;조문택
    • Fire Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.28-39
    • /
    • 1996
  • A recently developed electro-thermal simulation methodology is used to analyze the behavior of a PWM(Pulse-Width-Modulated) voltage source inverter which uses IGBT(Insulated Gate Bipolar Transistor) as the switching devices. In the electro-thermal network simulation methdology, the simulator solves for the temperature distribution within the power semiconductor devices(IGBT electro-thermal model), control logic circuitry, the IGBT gate drivers, the thermal network component models for the power silicon chips, package, and heat sinks as well as the current and voltage within the electrical network. The thermal network describes the flow of heat form the chip surface through the package and heat sink and thus determines the evolution of the chip surface temperature used by the power semiconductor device models. The thermal component model for the device silicon chip, packages, and heat sink are developed by discretizing the nonlinear heat diffusion equation and are represented in component from so that the thermal component models for various package and heat sink can be readily connected to on another to form the thermal network.

  • PDF

2D Kinetic Simulation of Partially Magnetized Capacitively Coupled Plasma Sources (2차원 동역학 시뮬레이션을 활용한 부분적으로 자화된 용량성 결합 플라즈마 전산 모사)

  • Sung Hyun Son;Junbeom Park;Kyoung-Jae Chung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.118-123
    • /
    • 2023
  • Partially magnetized capacitively coupled plasma (CCP) sources are investigated using a two-dimensional kinetic simulation code named EDIPIC-2D. A converging numerical solution was obtained for CCP with a 60 MHz power source, while properly capturing the dynamics of electrons and power absorption over a single RF period. The effects of magnetic fields with different orientations were evaluated. Axial magnetic fields caused changes in the spatial distribution of plasma density, affecting the loss channel. Transverse magnetic fields enhanced stochastic heating near the powered electrode, leading to an increase in plasma density while the significant E×B drift loss compensated for this rise.

  • PDF