• Title/Summary/Keyword: semiconductor optimization

Search Result 295, Processing Time 0.025 seconds

Study of Switching and Kirk Effects in InAlAs/InGaAs/InAlAs Double Heterojunction Bipolar Transistors

  • Mohiuddin, M.;Sexton, J.;Missous, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.516-521
    • /
    • 2013
  • This paper investigates the two dominant but intertwined current blocking mechanisms of Switching and Kirk Effect in pure ternary InAlAs/InGaAs/InAlAs Double Heterojunction Bipolar Transistors (DHBTs). Molecular Beam Epitaxy (MBE) grown, lattice-matched samples have been investigated giving substantial experimental results and theoretical reasoning to explain the interplay between these two effects as the current density is increased up to and beyond the theoretical Kirk Effect limit for devices of emitter areas varying from $20{\times}20{\mu}m^2$ to $1{\times}5{\mu}m^2$. Pure ternary InAlAs/InGaAs/InAlAs DHBTs are ideally suited for such investigations because, unless corrective measures are taken, these devices suffer from appreciable current blocking effect due to their large conduction band discontinuity of 0.5 eV and thus facilitating the observation of the two different physical phenomena. This enhanced understanding of the interplay between the Kirk and Switching effect makes the DHBT device design and optimization process more effective and efficient.

Design of Fuzzy Neural Networks Based on Fuzzy Clustering with Uncertainty (불확실성을 고려한 퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계)

  • Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.173-181
    • /
    • 2017
  • As the industries have developed, a myriad of big data have been produced and the inherent uncertainty in the data has also increased accordingly. In this paper, we propose an interval type-2 fuzzy clustering method to deal with the inherent uncertainty in the data and, using this method, design and optimize the fuzzy neural network. Fuzzy rules using the proposed clustering method are designed and carried out the learning process. Genetic algorithms are used as an optimization method and the model parameters are optimally explored. Experiments were performed with two pattern classification, both of the experiments show the superior pattern recognition results. The proposed network will be able to provide a way to deal with the uncertainty increasing.

A SPICE-based 3-dimensional circuit model for Light-Emitting Diode (SPICE 기반의 발광 다이오드 3차원 회로 모델)

  • Eom, Hae-Yong;Yu, Soon-Jae;Seo, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.7-12
    • /
    • 2007
  • A SPICE-based 3-dimensional circuit model of LED(Light-Emitting Diode) was developed for the design optimization and analysis of high-brightness LEDs. An LED is represented as an array of pixel LEDs with small preassigned areas, and each of the pixel LEDs is composed of circuit networks representing the thin-film layers(n-metal, n- and p-type semiconductor layers, and p-metal), ohmic contacts, and pn-junctions. Each of the thin-film layers and contact resistances is modeled by a resistance network, and the pn-junction is modeled by a conventional pn-junction diode. It has been found that the simulation results using the model and the corresponding parameters precisely fit the measured LED characteristics.

A Rule-based Optimal Placement of Scaling Shifts in Floating-point to Fixed-point Conversion for a Fixed-point Processor

  • Park, Sang-Hyun;Cho, Doo-San;Kim, Tae-Song;Paek, Yun-Heung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.234-239
    • /
    • 2006
  • In the past decade, several tools have been developed to automate the floating-point to fixed-point conversion for DSP systems. In the conversion process, a number of scaling shifts are introduced, and they inevitably alter the original code sequence. Recently, we have observed that a compiler can often be adversely affected by this alteration, and consequently fails to generate efficient machine code for its target processor. In this paper, we present an optimization technique that safely migrates scaling shifts to other places within the code so that the compiler can produce better-quality code. We consider our technique to be safe in that it does not introduce new overflows, yet preserving the original SQNR. The experiments on a commercial fixed-point DSP processor exhibit that our technique is effective enough to achieve tangible improvement on code size and speed for a set of benchmarks.

Energy-efficient Custom Topology Generation for Link-failure-aware Network-on-chip in Voltage-frequency Island Regime

  • Li, Chang-Lin;Yoo, Jae-Chern;Han, Tae Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.6
    • /
    • pp.832-841
    • /
    • 2016
  • The voltage-frequency island (VFI) design paradigm has strong potential for achieving high energy efficiency in communication centric manycore system-on-chip (SoC) design called network-on-chip (NoC). However, because of the diminished scaling of wire-dimension and supply voltage as well as threshold voltage in modern CMOS technology, the vulnerability to link failure in VFI NoC is becoming a crucial challenge. In this paper, we propose an energy-optimized topology generation technique for VFI NoC to cope with permanent link failures. Based on the energy consumption model, we exploit the on-chip communication traffic patterns and characteristics of link failures in the early design stage to accommodate diverse applications and architectures. Experimental results using a number of multimedia application benchmarks show the effectiveness of the proposed three-step custom topology generation method in terms of energy consumption and latency without any degradation in the fault coverage metric.

Optimization of CMP Process parameter using DOE(Design of Experiment) Technique (DOE(Design of Experiment)기법을 통한 CMP 공정 변수의 최적화)

  • Lee, Kyoung-Jin;Park, Sung-Woo;Park, Chang-Jun;Kim, Ki-Wook;Jeong, So-Young;Kim, Chul-Bok;Choi, Woon-Shik;Kim, Sang-Yong;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.228-232
    • /
    • 2002
  • The rise throughput and the stability in the device fabrication can be obtained by applying chemical mechanical polishing(CMP) process in 0.18 ${\mu}m$ semiconductor device. However it does have various problems due to the CMP equipment. Especially, among the CMP components, process variables are very important parameters in determining removal rate and non-uniformity. In this paper, We studied the DOE(design of experiment) method for the optimized CMP process. Various process variations, such as table and head speed, slurry flow rate and down force, have investigated in the viewpoint of removal rate and non-uniformity. Through the above DOE results, we could set-up the optimal process parameters.

  • PDF

An improved plasma model by optimizing neuron activation gradient (뉴런 활성화 경사 최적화를 이용한 개선된 플라즈마 모델)

  • 김병환;박성진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.20-20
    • /
    • 2000
  • Back-propagation neural network (BPNN) is the most prevalently used paradigm in modeling semiconductor manufacturing processes, which as a neuron activation function typically employs a bipolar or unipolar sigmoid function in either hidden and output layers. In this study, applicability of another linear function as a neuron activation function is investigated. The linear function was operated in combination with other sigmoid functions. Comparison revealed that a particular combination, the bipolar sigmoid function in hidden layer and the linear function in output layer, is found to be the best combination that yields the highest prediction accuracy. For BPNN with this combination, predictive performance once again optimized by incrementally adjusting the gradients respective to each function. A total of 121 combinations of gradients were examined and out of them one optimal set was determined. Predictive performance of the corresponding model were compared to non-optimized, revealing that optimized models are more accurate over non-optimized counterparts by an improvement of more than 30%. This demonstrates that the proposed gradient-optimized teaming for BPNN with a linear function in output layer is an effective means to construct plasma models. The plasma modeled is a hemispherical inductively coupled plasma, which was characterized by a 24 full factorial design. To validate models, another eight experiments were conducted. process variables that were varied in the design include source polver, pressure, position of chuck holder and chroline flow rate. Plasma attributes measured using Langmuir probe are electron density, electron temperature, and plasma potential.

  • PDF

Design of a Robust Position Tracking Controller with Sliding Mode for a 6-DOF Micropositioning Stage (6자유도 정밀 스테이지의 추종제어를 위한 슬라이딩 모드 제어기 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • As high precision industries such as semiconductor, TFT-LCD manufacturing and MEMS continue to grow, the demand for higher DOF precision stages has been increasing. In general, the stages should accommodate a prescribed range of payloads in order to position various precision manufacturing/inspection instruments. Therefore a nonlinear controller using sliding motion is developed, which bears mass perturbation and makes the upper plate of the stage move in 6 DOF. For the application of the nonlinear control, an observer is also developed based on expected noise covariance. To eliminate the steady state error of step response, integral terms are inserted into the state-space model. The linear term of the controller is designed using optimization scheme in which parameters can be weighted according to their physical significance, whereas the nonlinear term of the controller is designed using trial and error method. A comprehensive simulation study proves that the designed controller is robust against mass perturbation and completely eliminates steady state errors.

Synthesis of Fluorinated Polymer Gate Dielectric with Improved Wetting Property and Its Application to Organic Field-Effect Transistors

  • Kim, Jae-Wook;Jung, Hee-Tae;Ha, Sun-Young;Yi, Mi-Hye;Park, Jae-Eun;Kim, Hyo-Joong;Choi, Young-Ill;Pyo, Seung-Moon
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.646-650
    • /
    • 2009
  • We report the fabrication of pentacene organic field-effect transistors (OFETs) using a fluorinated styrene-alt-maleic anhydride copolymer gate dielectric, which was prepared from styrene derivatives with a fluorinated side chain [$-CH_2-O-(CH_2)_2-(CF_2)_5CF_3$] and maleic anhydride through a solution polymerization technique. The fluorinated side chain was used to impart hydrophobicity to the surface of the gate dielectric and maleic anhydride was employed to improve its wetting properties. A field-effect mobility of 0.12 cm$^2$/Vs was obtained from the as-prepared top-contact pentacene FETs. Since various functional groups can be introduced into the copolymer due to the nature of maleic anhydride, its physical properties can be manipulated easily. Using this type of copolymer, the performance of organic FETs can be enhanced through optimization of the interfacial properties between the gate dielectric and organic semiconductor.

Optimal Tuning of Biaxial Servomechanisms Using a Cross-coupled Controller (상호결합제어기를 이용한 2축 서보메커니즘의 최적튜닝)

  • Bae Ho-Kyu;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1209-1218
    • /
    • 2006
  • Precision servomechanisms are widely used in machine tool, semiconductor and flat panel display industries. It is important to improve contouring accuracy in high-precision servomechanisms. In order to improve the contouring accuracy, cross-coupled control systems have been proposed. However, it is very difficult to select the controller parameters because cross-coupled control systems are multivariable, nonlinear and time-varying systems. In this paper, in order to improve contouring accuracy of a biaxial servomechanism, a cross-coupled controller is adopted and an optimal tuning procedure based on an integrated design concept is proposed. Strict mathematical modeling and identification process of a servomechanism are performed. An optimal tuning problem is formulated as a nonlinear constrained optimization problem including the relevant controller parameters of the servomechanism. The objective of the optimal tuning procedure is to minimize both the contour error and the settling time while satisfying constraints such as the relative stability and maximum overshoot conditions, etc. The effectiveness of the proposed optimal tuning procedure is verified through experiments.