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Abstract—This paper investigates the two dominant 
but intertwined current blocking mechanisms of 
Switching and Kirk Effect in pure ternary 
InAlAs/InGaAs/InAlAs Double Heterojunction 
Bipolar Transistors (DHBTs). Molecular Beam 
Epitaxy (MBE) grown, lattice-matched samples have 
been investigated giving substantial experimental 
results and theoretical reasoning to explain the 
interplay between these two effects as the current 
density is increased up to and beyond the theoretical 
Kirk Effect limit for devices of emitter areas varying 
from 20x20 μm2 to 1x5 μm2. Pure ternary 
InAlAs/InGaAs/InAlAs DHBTs are ideally suited for 
such investigations because, unless corrective 
measures are taken, these devices suffer from 
appreciable current blocking effect due to their large 
conduction band discontinuity of 0.5 eV and thus 
facilitating the observation of the two different 
physical phenomena. This enhanced understanding of 
the interplay between the Kirk and Switching effect 
makes the DHBT device design and optimization 
process more effective and efficient.   
 
Index Terms—DHBT, current blocking, Kirk effect, 
switching effect    

I. INTRODUCTION 

Double Heterojunction Bipolar Transistors (DHBTs) 
are preferred over Single Heterojunction Bipolar 
Transistors (SHBTs) because they offer higher 
breakdown and larger Early voltage which are required 
for high power microwave and precision analog and 
mixed signal applications [1, 2]. These characteristics are 
achieved in InP-based DHBTs by using a large band gap 
material in the collector region to reduce the deleterious 
effect of impact ionization in the otherwise low band gap 
material (In0.53Ga0.47As) in the collector region of SHBT. 
This, however, introduces a large energy barrier at the 
base-collector interface which impedes carrier flow 
across the junction appreciably reducing the current gain. 
This reduction is usually referred to as collector current 
blocking [3] and it is directly proportional to the 
conduction band discontinuity (ΔEc) at the base-collector 
heterojunction. Many researchers [2, 4-6] investigated 
current blocking in InP, In0.52Al0.48As or quaternary 
InAlGaAs collector based DHBTs. McAlister et al. [7] 
and others [2, 4, 5] used a combination of dipole doping 
[8] and setback layer in DHBTs of different materials to 
reduce current blocking. Despite elimination of current 
blocking under low current conditions, this phenomenon 
resurfaces at higher current densities due to the electron 
pile-up at the BC heterointerface and its screening effect 
on the electric field [9] and results in a very large offset 
voltage and a sudden rise in the output current; this 
characteristic behavior is called the switching effect [9, 
10]. 
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Another dominant mechanism causing loss of current 
gain in bipolar transistors is the Kirk Effect [11]. As the 
current density increases in bipolar transistors, the 
electric field across the BC junction is reduced to zero 
due to the screening effect of the mobile carriers crossing 
the BC junction. This absence of electric field allows the 
majority carriers from the base to diffuse into the 
collector causing base push out, which results in the loss 
of current gain; this phenomenon is called Kirk effect [1]. 
More recently the Kirk Effect has been thoroughly 
investigated for non-uniformly-doped, multi-layered 
collector or small feature size device designs [1, 12, 13] 
to enable device operation at higher current densities 
which is required to achieve very high cut-off 
frequencies.   

There has been a renewed interest in the pure ternary 
InAlAs/InGaAs/InAlAs DHBTs due to their high 
breakdown and favorable high frequency characteristics 
[6, 14]. This paper uses simple DC measurements to 
single out the actual current blocking mechanism in 
various InAlAs/InGaAs/InAlAs DHBT device designs. 
Furthermore the technique is completely general and is 
equally applicable to uniformly doped and multi-layer 
collector designs.  

II. EPITAXIAL STRUCTURE GROWTH AND 

DEVICE FABRICATION 

Wafers were grown on a RIBER V100+ solid source 
Molecular Beam Epitaxy (MBE) on <100> oriented, 
semi-insulating Fe-doped InP substrates. In Sample 1 a 
heavily Be-doped In0.53Ga0.47As base of thickness 650 Å 
and doping 2x1019 cm-3 is sandwiched between 
In0.52Al0.48As emitter and collector of thickness 500 Å 
and 2000Å respectively. The salient features of the 
epitaxial structure are the insertion of an InGaAs setback 
layer of thickness 500 Å between the base and the 
collector with 1x1016 cm-3 n-type doping. Furthermore, a 
dipole of thickness 2x100 Å and 3x1018 cm-3 doping 
across the base-collector (B-C) heterointerface is 
introduced. The base-emitter (B-E) heterojunction is 
abrupt with a spacer layer of 100 Å thickness with no 
intentional doping. The entire epitaxial structure 
comprises only In0.52Al0.48As and In0.53Ga0.47As layers 
lattice-matched to InP and no quaternary alloys are used. 
Sample 2 has similar epilayers, however, instead of a 

dipole it only has an n-spike of thickness 50 Å and 
doping of 2x1018 cm-3 at the BC interface; detailed study 
on epitaxial structures and current blocking elimination 
have already been reported by the authors [6]. 

Devices of emitter areas varying from 20x20 down to 
1x5 μm2 were fabricated using a triple mesa, wet etching 
process.   

III. DYNAMICS OF SWITCHING AND KIRK 

EFFECT 

1. Switching Effect 
 
The SILVACO ATLAS 2-D physical simulator [15] is 

used to calculate the equilibrium band diagrams of Fig. 1, 
which illustrate that the large band gap discontinuity of 
the B-C junction can be reduced partially by the 
introduction of a setback layer of thickness 500Å. The 
amount of band bending on both sides of a heterojunction 
is in inverse proportion to their doping [16]. Fig. 1(A) 
shows the band diagram of InAlAs-InGaAs DHBT 
without the setback layer. Since the interface is between 
a very heavily doped base and a lightly doped collector 
region, it results in a large B-C junction spike as shown 
in Fig. 1(A). However, insertion of a setback layer 
increases band bending on the In0.53Ga0.47As side of the 
B-C heterointerface, forcing the band spike down 
resulting in the start of carrier flow across the B-C 
junction as shown in Fig. 1(B).  

Despite appreciable reduction in the band spike 
relative to the conduction band edge at the base, the 
barrier for electrons still remains at the B-C 
heterojunction. The use of Composite Collector (CC) 
reduces and transforms the step barrier into a triangular 
quantum well; under forward bias conditions, electrons 
exiting the base experience the supportive electric field 
and are swept across. However, due to the presence of 
the triangular well, most of the electrons cannot cross the 
BC heterojunction and rather get trapped in the well and 
start piling up as shown in Fig. 1(B). This electron pile 
up screens out the field across the B-C junction and due 
to this effective reduction in electric field electrons 
acquire less energy from the BC reverse bias voltage. At 
this stage there are very few electrons that make it to the 
collector and the predominant transport mechanism 
across the BC junction is tunneling. As the base collector 
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bias is increased further, this leads to increased tunneling 
across the BC heterointerface influencing current flow 
across the BC heterointerface in two ways: 

(1) Increased tunneling directly raises the current flow 
across the BC junction leading to larger collector current 
and  

(2) As the electrons escape the quantum well, their 
screening effect on the original electric field (due to B-C 
reverse bias) is also reduced. With the reappearance of 
the larger electric field across the BC junction, electrons 
attain higher energy as they go downhill across the 
junction leading to enhanced thermionic emission across 
the BC energy barrier [9, 17].   

This positive feedback causes a switching of transport 
mechanism from predominantly tunneling to thermionic 
emission across the BC heterointerface and gives rise to 
precipitous increase in the collector current; this 
phenomenon is called switching effect in DHBTs [3, 7, 9, 
17].  

 
2. Kirk Effect 

 
For HBTs with cut-off frequencies of 100 GHz and 

above, Kirk Effect is the dominant performance limiting 
mechanism because these devices operate at current 
densities very close to the Kirk Effect limit derived from 
equations given by [18]: 
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where NC is the collector doping, vsat is the saturation 
velocity, Vbi(BC) is the built-in potential at the BC 
heterojunction, XC is the collector thickness, q and ε are 
electron charge and permittivity. Eq. (1) takes into 
account the mobile carriers that cross the BC depletion 
region and gives the current density at which the electric 
field profile in the BC depletion region starts to invert 
and the base push out occurs. Unlike the Switching effect, 
the Kirk effect occurs in both Single and Double HBTs. 

IV. RESULTS AND DISCUSSION 

Fig. 2 compares I-V curves of samples 1 and 2 
illustrating the switching effect. Sample 1 incorporates a 
doping interface dipole (DID) and that is why its I-V 
curves show no signs of current blocking for a current 
density of 5 kA/cm2 whereas sample 2 (which does not 
have a dipole) shows characteristic sharp rise in the 
collector current indicating the presence of switching 
effect even for a moderate current density of 5 kA/cm2.  

The first order calculation of Jkirk using Eq. (1) is ~40 
kA/cm2 assuming saturation velocity of electrons in the 
collector (vsat) to be 5x106 cm/s for sample 1. To 
elucidate the interplay between Switching and Kirk effect, 
the current density for the sample 1 devices is varied by 
an order of magnitude i.e. from 5 kA/cm2 (Fig. 2) to 
about 50 kA/cm2 (Fig. 3(C)). At lower values of the 
current density, no current blocking is observed in 
sample 1 devices (Fig. 1), however as the current density 
reaches values in excess of 20-30 kA/cm2 even for 
sample 1 devices, characteristic switching phenomena is 
observed as is evidenced by the sharp rise in the collector 

 

Fig. 1. Equilibrium band diagram model of an InAlAs/
InGaAs DHBT with and without a setback layer. 

 

 

Fig. 2. DC I-V curves of Samples 1 and 2 devices with 
emitter area of 20x20 μm2. 
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current in the current-voltage characteristics shown in 
Fig. 3(A); however, as the current density is further 
increased to about the Jkirk limit (40 kA/cm2), the 
precipitous rise in the collector current changes to the 
soft knee characteristics as shown in Fig. 3(C). This is a 
very important phenomenon, which is consistently 
observed in other samples (not reported here) as well. It 
highlights first the straightforward way of distinguishing 
between Kirk and Switching effect by way of measuring 
output conductance and looking for the distinctive peaks 
as shown in Fig. 3(B). Furthermore it reflects the 
overwhelming influence of the Kirk effect on a sample 
already showing current blocking effect such that the 
signature of the output conductance curves change from 
showing sharp peaks to almost constant value of the 
output conductance. 

This is a very simple technique to distinguish between 
the two dominant current blocking mechanisms and is 
independent of the material system and the collector 
design.        
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