• Title/Summary/Keyword: semiconductor detector

Search Result 194, Processing Time 0.023 seconds

A 3-GSymbol/s/lane MIPI C-PHY Transceiver with Channel Mismatch Correction Circuit (채널 부정합 보정 회로를 가진 3-GSymbol/s/lane MIPI C-PHY 송수신기)

  • Choi, Seokwon;Song, Changmin;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1257-1264
    • /
    • 2019
  • A 3-GSymbol/s/lane transceiver, which supports the mobile industry processor interface (MIPI) C-physical layer (PHY) specification version 1.1, is proposed. It performs channel mismatch correction to improve the signal integrity that is deteriorated by using three-level signals over three channels. The proposed channel mismatch correction is performed by detecting channel mismatches in the receiver and adjusting the delay times of the transmission data in the transmitter according to the detection result. The channel mismatch detection in the receiver is performed by comparing the phases of the received signals with respect to the pre-determined data pattern transmitted from the transmitter. The proposed MIPI C-PHY receiver is designed using a 65 nm complementary metal-oxide-semiconductor (CMOS) process with 1.2 V supply voltage. The area and power consumption of each transceiver lane are 0.136 ㎟ and 17.4 mW/GSymbol/s, respectively. The proposed channel mismatch correction reduces the time jitter of 88.6 ps caused by the channel mismatch to 34.9 ps.

Dose Distribution&Calibration in HDR Intracavitary Irradiation for Uterine Cervical Cancer (자궁경부암의 강내치료를 위한 선량측정)

  • 김진기;김정수;김형진;권형철
    • Progress in Medical Physics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • Dose distribution of HDR-RALS source represents an inverse square law as the distance. Difference of measurement value and calculation value according of brachytherapy. Therefore, in HDR-RALS dose calibration and calculation have an important effect in treatment of uterine cervical cancer and absorbed dose of interesting points. In intracavitary therapy, particula attention is paid for precise determination of the doses to be applied. In this report, we have discussed that the calibration of a HDR-RALS, differences between calculation dose use of isodose chart and measurement in rectum. Dose rate calibration of radiation sources are obtained from air kerma and Г factor with calibraed ion chamber for cobalt source. and used semiconductor detector for compared with measurement in phantom. Eighteen patients were treated with a HDR-RALS for intrcavitarty irradiation (ICR) using a cobalt-cesium source. Repoductivity of dose measurements were 0.3 -1.1% in phantom. The means of dose distribution was -6- +21% between calculation of isodose chart and measurement of recyum, and was same mean value upper 6.3% in measurement value than calculation does.

  • PDF

A Study on the Development of Marine Detector Using Nano-technology (나노기술과 해양용 센서 개발에 관한 연구)

  • Han, Song-Hee;Cho, Beong-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.39-43
    • /
    • 2008
  • It is generally recognized that monitering of bio-molecules, which are related to the ocean environment, becomes more important. So far, for the detection of the bio-molecules, ocean samples were brought to laboratory to be analyzed using a complicate and expensive measuring system The "ship and dip" method takes a relatively long time to complete a analysis cycle and causes significant errors due to the time difference between the analysis processes. In order to overcome the drawbacks, developments of sensors for the detection of bio-molecules were suggested using nano-technology, such as nano-spintronic device, carbon nano tube device, and nano-semiconductors. The pros and cons of the technology were examined and reinvestigated to overcome the technical problems in the application to real sensors.

  • PDF

LED Communication-based Multi-hop Wireless Transmission Network System (LED 통신기반 멀티 홉 무선 전송네트워크시스템)

  • Jo, Seung-Wan;Dung, Le-The;An, Beong-Ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.37-42
    • /
    • 2012
  • LED is just a semiconductor which can produce light. Currently, there are active research works on LED lighting technologies according to the growth of energy-saving environmental industry. Especially, LED communication is one of the active research works in these fields. In this paper, we design a LED communication-based multi-hop transmission wireless network system. The designed system consists of a transmission circuit system(transmitter) using LED and a receiving circuit system(receiver) using PD(photo detector) and OP-Amp, and relay system which can support multi-hop wireless network service with PD, OP-Amp, and LED, respectively. The experiments for the designed system are performed as follows. One computer is connected at the end of transmitter and receiver, respectively. There are two relays between transmitter and receiver, and text files are transmitted continuously by using text transmission programming. In this experiment, we test the performance with various baud rates, transmission ranges.

UV Responsive Characteristics of n-Channel Schottky Barrier MOSFET with ITO as Source/Drain Contacts

  • Kim, Tae-Hyeon;Lee, Chang-Ju;Kim, Dong-Seok;Sung, Sang-Yun;Heo, Young-Woo;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.156-161
    • /
    • 2011
  • We fabricated a schottky barrier metal oxide semiconductor field effect transistor(SB-MOSFET) by applying indium-tin-oxide(ITO) to the source/drain on a highly resistive GaN layer grown on a silicon substrate. The MOSFET, with 10 ${\mu}M$ gate length and 100 ${\mu}M$ gate width, exhibits a threshold gate voltage of 2.7 V, and has a sub-threshold slope of 240 mV/dec taken from the $I_{DS}-V_{GS}$ characteristics at a low drain voltage of 0.05 V. The maximum drain current is 18 mA/mm and the maximum transconductance is 6 mS/mm at $V_{DS}$=3 V. We observed that the spectral photo-response characterization exhibits that the cutoff wavelength was 365 nm, and the UV/visible rejection ratio was about 130 at $V_{DS}$ = 5 V. The MOSFET-type UV detector using ITO, has a high UV photo-responsivity and so is highly applicable to the UV image sensors.

A Design of Solar Proton Telescope for Next Generation Small Satellite

  • Sohn, Jongdae;Oh, Suyeon;Yi, Yu;Min, Kyoung-Wook;Lee, Dae-Young;Seon, Jongho
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The solar proton telescope (SPT) is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS) which is determined for next generation small satellite-1 (NEXTSat-1). The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4). The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV) for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD) signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

A Two-Point Modulation Spread-Spectrum Clock Generator With FIR-Embedded Binary Phase Detection and 1-Bit High-Order ΔΣ Modulation

  • Xu, Ni;Shen, Yiyu;Lv, Sitao;Liu, Han;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.425-435
    • /
    • 2016
  • This paper describes a spread-spectrum clock generation method by utilizing a ${\Delta}{\Sigma}$ digital PLL (DPLL) which is solely based on binary phase detection and does not require a linear time-to-digital converter (TDC) or other linear digital-to-time converter (DTC) circuitry. A 1-bit high-order ${\Delta}{\Sigma}$ modulator and a hybrid finite-impulse response (FIR) filter are employed to mitigate the phase-folding problem caused by the nonlinearity of the bang-bang phase detector (BBPD). The ${\Delta}{\Sigma}$ DPLL employs a two-point modulation technique to further enhance linearity at the turning point of a triangular modulation profile. We also show that the two-point modulation is useful for the BBPLL to improve the spread-spectrum performance by suppressing the frequency deviation at the input of the BBPD, thus reducing the peak phase deviation. Based on the proposed architecture, a 3.2 GHz spread-spectrum clock generator (SSCG) is implemented in 65 nm CMOS. Experimental results show that the proposed SSCG achieves peak power reductions of 18.5 dB and 11 dB with 10 kHz and 100 kHz resolution bandwidths respectively, consuming 6.34 mW from a 1 V supply.

A 60-GHz LTCC SiP with Low-Power CMOS OOK Modulator and Demodulator

  • Byeon, Chul-Woo;Lee, Jae-Jin;Kim, Hong-Yi;Song, In-Sang;Cho, Seong-Jun;Eun, Ki-Chan;Lee, Chae-Jun;Park, Chul-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.229-237
    • /
    • 2011
  • In this paper, a 60 GHz LTCC SiP with low-power CMOS OOK modulator and demodulator is presented. The 60 GHz modulator is designed in a 90-nm CMOS process. The modulator uses a current reuse technique and only consumes 14.4-mW of DC power in the on-state. The measured data rate is up to 2 Gb/s. The 60 GHz OOK demodulator is designed in a 130nm CMOS process. The demodulator consists of a gain boosting detector and a baseband amplifier, and it recovers up to 5 Gb/s while consuming low DC power of 14.7 mW. The fabricated 60 GHz modulator and demodulator are fully integrated in an LTCC SiP with 1 by 2 patch antenna. With the LTCC SiP, 648 Mb/s wireless video transmission was successfully demonstrated at wireless distance of 20-cm.

Development of a Fast Neutron Detector (속중성자 탐지용 반도체 소자 개발)

  • 이남호;김승호;김양모
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.545-552
    • /
    • 2003
  • When a Si PIN diode is exposed to fast neutrons, it results in displacement damage to the Si lattice structure of the diode. Defects induced from structural dislocation become effective recombination centers for carriers which pass through the base of a PIN diode. Hence, increasing the resistivity of the diode decreases the current for the applied forward voltage. This paper involves the development of a neutron sensor based on the phenomena of the displacement effect damaged by neutron exposure. The neutron effect on the semiconductor was analyzed. Several PIN diode arrays with various thickness and cross-section area of the intrinsic layer(I layer) were fabricated. Under irradiation tests with a neutron beam, the manufactured diodes have a good linearity to neutron dose and show that the increase of thickness of I layer and the decrease of cross-section of PIN diodes improve the sensitivity. Newly developed PIN diodes with thicker I layer and various cross section, were retested and then showed the best neutron sensitivity at the condition that the I layer thickness was similar to a side length. On the basis of two test results, final discrete PIN diodes with a rectangular shape were manufactured and the characteristics as neutron detectors were analyzed through the neutron beam test using on-line electronic dosimetry system. Developed PIN diode shows a good linearity as dosimetry in the range of 0 to 1,000cGy(Tissue) and its neutron sensitivity is 13mV/cGy at constant current of 5mA, that is three times higher than that of commercially available neutron detectors. And the device shows little dependency on the orientation of the neutron beam and a considerable stability in annealing test for a long period.

Development of Gas Leak Detecting System Based on Quantum Technology (양자기술기반 가스 누출 감지 시스템 개발)

  • Kwon, Oh Sung;Park, Min Young;Ban, Changwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.57-62
    • /
    • 2021
  • Gas is an energy source widely used in general households and industrial sites, and is also a process material widely used in petrochemical and semiconductor processes. However, while it is easy to use, it can cause large-scale human damage due to leakage, explosion, and human inhalation. Therefore, a gas facility safety management solution that can be safely used at home and industrial sites is essential. In particular, the need to develop advanced gas safety solutions is emerging as gas facilities are aging. In this paper, a technology was developed to measure the presence and concentration of gas leaks from a distance by irradiating photons, the minimum energy unit that can no longer be divided into gas facilities, and analyzing the number of reflected photons. This overcomes technical limitations such as short detection distance and inability to detect fine leaks, which are the limitations of conventional electric/chemical gas sensors or infrared-based gas leak detectors.