DOI QR코드

DOI QR Code

Development of Gas Leak Detecting System Based on Quantum Technology

양자기술기반 가스 누출 감지 시스템 개발

  • Received : 2021.09.10
  • Accepted : 2021.10.23
  • Published : 2021.10.30

Abstract

Gas is an energy source widely used in general households and industrial sites, and is also a process material widely used in petrochemical and semiconductor processes. However, while it is easy to use, it can cause large-scale human damage due to leakage, explosion, and human inhalation. Therefore, a gas facility safety management solution that can be safely used at home and industrial sites is essential. In particular, the need to develop advanced gas safety solutions is emerging as gas facilities are aging. In this paper, a technology was developed to measure the presence and concentration of gas leaks from a distance by irradiating photons, the minimum energy unit that can no longer be divided into gas facilities, and analyzing the number of reflected photons. This overcomes technical limitations such as short detection distance and inability to detect fine leaks, which are the limitations of conventional electric/chemical gas sensors or infrared-based gas leak detectors.

가스는 일반 가정 및 산업현장에서 폭 넓게 사용되는 에너지원이기도 하고, 석유화학 및 반도체 공정에서 넓게 사용되는 공정 물질이기도 하다. 그러나 사용이 쉬운 반면에 누출 시, 폭발 및 인체흡입 등으로 대규모 인명피해를 발생시키기도 한다. 따라서 가정 및 산업현장에서 안심하고 사용할 수 있는 가스 시설물 안전관리 솔루션은 필수적이다. 특히 가스시설의 노후화에 따라 고도화된 가스안전 솔루션의 개발 필요성이 대두되고 있는 실정이다. 본 논문은 가스 시설물에 더 이상 나눌 수 없는 최소 에너지 단위인 광자를 조사하고, 반사된 광자의 수를 분석해 원거리에서 가스 누출 여부 및 농도를 측정하는 기술을 개발하였다. 이는 기존의 전기/화학식 가스 센서나 적외선 기반의 가스 누출 감지기의 한계인 짧은 탐지 거리, 미세 누출 감지 불가 등의 기술적 한계를 극복하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부와 한국산업기술진흥원의 "규제자유특구혁신사업육성(R&D, P0011362)"으로 수행된 연구결과입니다.

References

  1. Chen, S., Liu, D., Zhang, W., You, L., He, Y., Zhang, W. and Jiang, M. "Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system", Applied optics, 52(14), 3241-3245, (2013) https://doi.org/10.1364/AO.52.003241
  2. Volkov, S. N., Samokhvalov, I. V., Du Cheong, H., and Kim, D.. "Investigation of East Asian clouds with polarization light detection and ranging", Applied optics, 54(11), 3095-3105, (2015) https://doi.org/10.1364/AO.54.003095
  3. Casse, V., Gibert, F., Edouart, D., Chomette, O., and Crevoisier, C., "Optical energy variability induced by speckle: The cases of MERLIN and CHARM-F IPDA lidar". Atmosphere, 10(9), 540, (2019) https://doi.org/10.3390/atmos10090540
  4. Avetisov, V., Bjoroey, O., Wang, J., Geiser, P., and Paulsen, K. G., "Hydrogen sensor based on tunable diode laser absorption spectroscopy", Sensors, 19(23), 5313, (2019) https://doi.org/10.3390/s19235313
  5. Choi, I. Y., Baik, S. H., Cha, J. H., and Kim, J. H. , "Study of a Method for Measuring Hydrogen Gas Concentration Using a Photon-counting Raman Lidar System", Korean Journal of Optics and Photonics, 30(3), 114-119, (2019) https://doi.org/10.3807/KJOP.2019.30.3.114
  6. Verem'ev, R. N., Privalov, V. E., and Shemanin, V. G., "Optimization of a semiconductor lidar for detecting atmospheric molecular iodine and hydrogen", Technical Physics, 45(5), 636-640, (2000) https://doi.org/10.1134/1.1259691
  7. Lee, K., and Yang, K., "Analysis of InGaAs/InP single-photon avalanche diodes with the multiplication width variation", IEEE Photonics Technology Letters, 26(10), 999-1002, (2014) https://doi.org/10.1109/LPT.2014.2312022
  8. Zhao, Y., "Impact ionization in absorption, grading, charge, and multiplication layers of InP/ InGaAs SAGCM APDs with a thick charge layer", IEEE transactions on electron devices, 60(10), 3493-3499, (2013) https://doi.org/10.1109/TED.2013.2279299
  9. Rosenberg, D., Kerman, A. J., Molnar, R. J., & Dauler, E. A, "High-speed and high-efficiency superconducting nanowire single photon detector array", Optics express, 21(2), 1440-1447, (2013) https://doi.org/10.1364/OE.21.001440
  10. Tosi, A., Acerbi, F., Anti, M., and Zappa, F., "InGaAs/InP single-photon avalanche diode with reduced afterpulsing and sharp timing response with 30 ps tail", IEEE Journal of quantum electronics, 48(9), 1227-1232, (2012) https://doi.org/10.1109/JQE.2012.2208097