• Title/Summary/Keyword: semi-symmetric metric connection

Search Result 55, Processing Time 0.023 seconds

SINGULAR THEOREMS FOR LIGHTLIKE SUBMANIFOLDS IN A SEMI-RIEMANNIAN SPACE FORM

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.371-383
    • /
    • 2014
  • We study the geometry of lightlike submanifolds of a semi-Riemannian manifold. The purpose of this paper is to prove two singular theorems for irrotational lightlike submanifolds M of a semi-Riemannian space form $\bar{M}(c)$ admitting a semi-symmetric non-metric connection such that the structure vector field of $\bar{M}(c)$ is tangent to M.

OPTIMAL INEQUALITIES FOR THE CASORATI CURVATURES OF SUBMANIFOLDS OF GENERALIZED SPACE FORMS ENDOWED WITH SEMI-SYMMETRIC METRIC CONNECTIONS

  • LEE, CHUL WOO;LEE, JAE WON;VILCU, GABRIEL-EDUARD;YOON, DAE WON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1631-1647
    • /
    • 2015
  • In this paper, we prove two optimal inequalities involving the intrinsic scalar curvature and extrinsic Casorati curvature of submanifolds of generalized space forms endowed with a semi-symmetric metric connection. Moreover, we also characterize those submanifolds for which the equality cases hold.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD WITH A NON-SYMMETRIC NON-METRIC CONNECTION OF TYPE (ℓ, m)

  • Lee, Chul Woo;Lee, Jae Won
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1203-1219
    • /
    • 2020
  • Jin [7] defined a new connection on semi-Riemannian manifolds, which is a non-symmetric and non-metric connection. He said that this connection is an (ℓ, m)-type connection. Jin also studied lightlike hypersurfaces of an indefinite trans-Sasakian manifold with an (ℓ, m)-type connection in [7]. We study further the geometry of this subject. In this paper, we study generic lightlike submanifolds of an indefinite trans-Sasakian manifold endowed with an (ℓ, m)-type connection.

GEOMETRIC INEQUALITIES FOR WARPED PRODUCTS SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • Mohd Aquib;Mohd Aslam;Michel Nguiffo Boyom;Mohammad Hasan Shahid
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.179-193
    • /
    • 2023
  • In this article, we derived Chen's inequality for warped product bi-slant submanifolds in generalized complex space forms using semisymmetric metric connections and discuss the equality case of the inequality. Further, we discuss non-existence of such minimal immersion. We also provide various applications of the obtained inequalities.