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SEMI-SYMMETRIC METRIC CONNECTION IN AN ALMOST 

CONTACT METRIC MANIFOLD 

By Ram Hit 

Friedmann and Schouten [1] introduced the idea of semi-symmetric Iinear con­

nection in a differentiable manifold. Hayden [낌 introduced the idea of metric 
connection with torsion tensor in a Riemannian manifold. Recently, Yano [3] 

and lmai [4] studied the properties of semi-symmetric metric connection in a 
Riemannian manifold. 

The purpose of this paper is to introduce the idea of semi-symmetric metric 

connection in an almost contact metric manifold and to study its propertìes. 

1. Preliminaries 

Let there exist in an n( =2m+ 1) dimensional real differentiable manifold of 

differentiability class c;oo. a C∞ vector-valued linear functioIi F. a C∞ vector field 

T and a C
OO 

1-form A satisfying 

(1.1) a) 호 보또 F(X). b) A(T)=L. c) A(X)=O. d) T=O, e) 좋+X=A(X)T， 
for an arbitrary vector field X. Then M

'1 
is called an almost contact manifold 

and the structure (F. T , A) is called an almost contact structure. ’ 
Recently, Mishra [5] has proved that (1. 1) e) alone defines an almost contact 

structure in a real differentiable manifold of differentiability class C∞. 

Let the almost contact metric manifold M'I be endowed with the non-singular 

metric tensor g satisfying 

(1. 2) g(효• Y) = g(X, Y) - A(X)A(Y). 

Then the manifold is called an almost contact metrÏc manifold. Putting T for X in 

(1. 2) and using (1. 1) we obtain 

(1. 3) g(Y. T) =A(Y). 

In an almost contact metric manifold the Nijenhuis tensor is given by 

(1.4) a) N(X.Y)=(DXF)(Y)-(DyF)(X)각E쩌(Y큐mπ)(X)， 

whence 

b) ’N(X.Y. Z)=(DX'F)(Y.Z)-(Dy'F)(X.Z) 十 (Dx’F)(Y. Z)- (Dy'F)(X. Z). 
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c) 'N(Z, Y , 호)=(D'i’F)(Y， 호)+(Dy'F)(호，'1) + (DX' F)(중， Y)-(Dy’F)(Z， 호) 

- (Dz' F)(X, Y)- (DX' F)(Y, Z) +2(DX'F)(Y, Z). 

In consequence of (1.1) c) , (1.4) a) gives 
(1. 5) a) A(N(X, Y))=A( [호， Y] ), 

b) A(N(X,Y))=A([X,Y J). 

If in an almost contact metric manifold M n 

(1. 6) , 'F(X, Y) = (dA) (X, Y) , 

the almost contact metric manifold is called an almost Sasakianmanifold (1. 6)a) 

is equivalent to 

(1. 7) (Dx'F)(Y, Z)- (Dy'F)(X, Z)+(D/F)(X, Y)=O, 

where D is a Riemannian connection. 

2. Serni-syrnrnetric rnetric connection. 

Let D be a Riemannîan connection in an almost contact metric manifold and B 

another affine connection satisfying 

(2.1) (Bxg)(Y, Z)=O. 

The torsion tensor of B is given by 

S(X,Y)=BxY-ByX- [X,Y]. 

DEFINITION 2. 1. If the torsion tensor S satisfies 
(2.2) ε(X， Y)=A(Y)X -A(X)Y, 

the connection B will be called semz"-symηtetrz"c ηzetyzOc connectz"on. 

Let us put 

(2.3) 

Consequently 

(2.4) 

Let us put 
(2.5) a) 

Then 
(2.6) 

BxY=DxY +H(X,Y). 

S(X, Y)=H(X, Y)-H(Y, X). 

'S(X, y , Z)=g(S(X, Y), Z) , b) 'H(X, Y , Z) =g(H(X, Y) , Z). 

'S(X, Y , Z)=' H(X, Y , Z)-' H(Y, X , Z). 

LEMMA 2. 1. Let D be a Rz"emannzoan connecUon zOn M
n 

and . B a semz"-symmetγit 

metrz"c connecUon satz"sfyz"ng (2.1). Then 

(2. 7) ’H(Y, Z , X) = 'S(X, Z , Y). 

PROOF. From (2.1), (2.3) and (2.5) b) we have 
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(2.8) , H(X.Y.Z)+'H(X. z. Y)=O. 

In view of (2.6) and (2.8) we obtain 

(2.9) 'S(X. Y. Z) = ’H(X.Y. Z)+'H(Y.Z.X). 

From (2.9) we obtain 

(2.10) 2 'H(Y. z. X)='S(X.Y.Z)+'S(Y.Z.X)-'S(Z.X. Y). 

In view of (2.2) and (2.5) a) the above equation reduces to (2.7). This com­

pletes the proof. 

In view of (2.2). 
(2.11) 

(2.5)a) and Iemma 2.1. the equation (2.3) becomes 

B xY = D xY + A(Y) + A(Y)X - g(X. Y)T. 

Equation (2.11) aIso defines semi-symmetric metric connection in an almost contact 

metric manifold. 

For the covariant differentiation of 1-form A we have 
(2, 12) (BxA)(Y)=(DxA)(Y)-A(X)A(Y)+ g(X,Y). 

Such a Iinear connection B wiII be caUed semi-symmetric metric connection. 

THEOREM 2. 1. Let D be a Rz"emannz"an connection z'n M n and B be a seηzi앙’m­

ηzetric metric connection satisfying 

(2.13) a) (Bx'F)(Y.Z)=O. b) A(B뀔-B흡)=A(B갤-ByX). 

Then the almost contact metric man찌ld z's comp!etely integrable. 

PROOF. We know [6J that when the aImost contact manifold is completely 

integrable 

(2.14) a) N(X. Y)=O. b) A(N(X.Y))=A(N(호.Y)) 

For an almost contact metrÏc manifold (2. 14)a) is equivalent to 
(2.15) 'N(X. Y.Z)=O. 

In consequence of (2. 13)a) we have 

(2.16) (Dx’F)(Y.Z)='H(X.Z.Y)- ’H(X. Y.Z). 

Barring X and Z in (2. 16) and using (1. 1) we obtain 

(2.17) (DX'F)(Y.Z)='H(X.Z.Y)+'H(호.Y.Z). 

AIso. from (2.2). (2.5)a) and Iemma 2. 1. we obtain 

~1~ 'H(호.Y.Z)=o. 

Using (2.18) in (2.17) we obtain 

(2.19) (Dx'F)(Y.Z)=O. 

Using (2.19) in (1. 4) c) we obtain (2.15). Equation (2.14) foUows immediately 

from (2. 13)b). in constèluence of (1. 5) a). b). 
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Thus the proof is complete. 

COROLLARY 2. 1. When the affz'ne connectz'on satz'sfz'es. (2. 13) a) : 

(2.20) 'S(Z. Y. 호)=(Dx’F)(Y. Z). 

Consequently. μ，ke?Z Mn z·s a,, almost Sasakia,z ma%ifold : 

(2.21) S(X. Z. Y)+S(Y. X. Z)+S(Z. Y. X)=O. 

PROOF. In consequence of (2. 13)a) we have 

'F(B XY. Z) +' F(Y. B XZ) = (Dx' F)(Y. Z) +' F(DXY' Z) +' F(Y. DXZ). 

Using (2.3) in this equation. we get 

(2.22) (DX'F)(Y. Z)=' H(X. Z , Y) -' H(X. Y , Z) 

From (2.2). (2.5)a) , (2.22) and lemma 2. 1, we obtain (2.20). (2.22) follows im­
mediately from (1. 7) and (2. 20). 

THEOREM 2.2. Let D be a Riemannian connection in an almost contact met서c 

ma쩌fold and B be a semi-symmet치c connexion satisfying (B xA) (Y) -- (ByA) (X) 

==' F(X. Y). Then M n is an almost Sasakian manifold. 

The proof is obvious. 

3. Curvature tensor of a serni-syrnrnetric rnetric connection 

Let R be the curvature tensor with respect to the connection B: 

(3.1) R(X. Y. Z) =BXByZ-ByBXZ-B [X ,Y] Z. 

and K be the curvature tensor with respect to the connection- D. 

(3.2) K(X. Y. Z) =D XDyZ - DyD xZ - D [X,yjZ. 

A manifold satisfying 

(3.3) 

and 
(3.4) 

R(X, Y , Z) =0. 

(B xS)(Y. Z) =0. 

is called a group manifold [3l. Equation (3.4) implies 

(3.5) . CDxA)(Y) -A(X)A(Y) +g(X. Y)=O. 

where we have used (2.2) and (2. 12); 

THEOREM 3. 1. 1f the almost contact met서c admitsa semi-symmetric met서c con­

nection fo1' μIhich the mamfold is a groμ:p manifold. theη the almost contact metric 

is of constaηt curν'atμre. 

PROOF. In view of (1.1). (2.11). (3.1). and (3.2) we have after some calcula-
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tions 
(3.6) 'R(X,Y , Z , W)='K(X, Y , Z , W)-(g(Y , Z)g(X , W)-g(X , Z)g(Y , W)) 

-g(X, W) ((DyA) (Z) -A(Y) A(Z)) 

+g(Y, W)((DXA)(Z)-A(X)A(Z)) 

-g(Y, Z) ((DXA) (W) -A(X)A(W)) 

+g(X, Z)((DyA)(W)-A(Y)A(W)) , 

where ’R(X,Y , Z , W)=g(R(X , Y , Z) , W) and 'K(X,Y , Z , W)=g(K(X ,Y , Z) , W). 

In view of (3.4) , (3.5) and (3.6) we have 
(3.7) 'K(X, Y , Z , W)=g(X , Z)g(Y , W) - g(Y , Z)g(X , W). 

This completes the proof. 

THEOREM 3.2. An almost contact metric manzfold with seηzi-symmetric metric 

connection whose cμrvatμre tensor vanishes is 01 constant cμrνatμre 1 ill (DxA)(Y) 

=A(X)A(Y) , where X and Y are arbitrary vector lields. 

PROOF. 

(3.8) 

iff 

Putting 'R(X,Y , Z,W)=O in (3.6) , we get 
'K(X, Y , Z , W)=g(Y , Z)g(X , W)-g(X , Z)g(Y ,W) 

(DxA)(Y) =A(X)A(Y). 

4. The induced connection 

Let M ~ , be submanifold of Mn" and Iet c : M ... _. ,-• M n " be the in-2m-l U'-' OUU.lu a..I..I..UV.lU V~ "'r.L 2m+l CU.lU .l\.<Lo (, • "',.... 2m-l . ... ,. ... 2m+l 

cIusion map such that 

dEM2m_ 1 'cdεM2m+l' 

c induces a Iinear transformation (Jacobian map) J 
J : T' C2m-l) .T’C2m+l)’ 

where T'C2m-l) is the tangent space to M2m- 1 at a point d and T'C2까+l) is 

the tangent space to M2m+l at cd, such that 

X in Mn.. , at d-• T X in M ...... " at cd. 2m-l u,1.I '-N -J~ ...... .L.L .J. FA. 2m+l 

Let g be the induced metric tensor in M 2m-l' Then we have 

(4. 1) ξ(x， Y) = (g(J X,]Y))b 

We now suppose that the almost contact metric manifold M 2m+ J admits a semi­

symmetric metric connection given by 

(4.2) BxY=DxY +A(X)Y -g(X,Y)T , 

where X and Y are arbitrary vector field of M2m+l' Let us put 
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(4.3) T=]t+ρM+aN， 

where t is a C∞ vector field in M 2m-l and M and N are unit nOllnaI vectors to 

M 2m - 1• 

Denoting by Ð the connection induced on the sub-manifold from D, we have 

the Gauss equation 

(4.4) D,xft' =](ÐxY)+h(X, Y)M +k(X, Y)N, 

where h and k are symmetric biIinear functions in M Zm - 1• SimiIarIy we have 

(4.5) Brx]y=](B j(Y) +m(X, Y)M +n(X, Y)N , 

where B is the connection induced on the submanifold from B and m and n are 

symmetric biIinear functions in M 2m- 1• From (4.2) we have 

BJx]Y = Drx]Y +A(]Y)BX -g(JX ,]Y)T, 

and hence, using (4. 4) and (4. 5), we find 

(4.6) ](BxY)+m(X,Y)M+n(X,Y)N 

=](ÐxY)+h(X, Y)M +k(X, Y)N 

+a(Y)]X-흥(X， Y) (Jt+ PM+N) , 
‘ 

where g(Y, t) 걷운 a(Y). This gives 

iff 

(4.7)a) 
b) 

Thus we have 

B j(Y=ÐxY +a(Y)X -g(X, Y)t 

m(X, Y)=h(X, Y) -pg(X, Y) , 
n(X, Y) =k(X, Y) -ug(X, Y). 

THEOREM 4. 1. The connection 쩌duced on a sμb-man쩌ld 01 an almost contact 

metric manilold μIUh a semi-symmetric metric connection with 1’espect to the unit nor­

mal vect01’'s M and N is also a semz"-symηlet껴c one ill (4.7) a) , b) hold. 

My hearty acknowledgement goes to Prof. R. S. Mishra for his kind suggestions. 
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