• Title/Summary/Keyword: self-reinforced composites

Search Result 44, Processing Time 0.029 seconds

Study of Mechanism for Improving Tensile Elastic Modulus of Self-reinforced Composite (친환경 저비중 자기보강 복합소재 개발을 위한 공정 변수별 영향도 평가)

  • Yun, Deok Woo;Kang, Hyun Min
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Tensile properties of polypropylene based self-reinforced composites were investigated as a function of process variables of the double-belt lamination equipment such as pressure, temperature and cooling conditions. Elastic modulus was enhanced approximately 6 times from 0.2 to 1.2 GPa. The improvement mechanism was studied by identification of crystalline structure changes using DSC and XRD analysis. In addition, morphology change of self-reinforced composites was also investigated by SEM analysis in order to reveal the degree of impregnation.

Study on Mechanical Properties and Flame Retardancy of Polypropylene Based Self-reinforced Composites (폴리프로필렌 기반 자기강화 복합재료의 기계적물성 및 난연성 연구)

  • Lee, Dong-Woo;Park, Seung-Bhin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.223-228
    • /
    • 2017
  • The article explains about development of flame retardant self-reinforced composites (FR-SRC) through compression molding technique by utilizing Polypropylene (PP), Ammonium polyphosphate (APP) and chitosan. The effect of APP and chitosan on mechanical, thermal and flame retardant properties in FR-SRC were studied. The mechanical strength of FR-SRC is enhanced than Pure SRC. However, the strength is decreased significantly with increasing the concentration of both flame retardant fillers. But comparison, chitosan filled FR-SRC is stronger than APP filled FR-SRC. In case of flame retardancy, APP is more effective than chitosan. These results can be applicable to provide light weight and recyclable flame retardant self-reinforced composites for automobile and packaging industries, etc.

Effect of temperature and blank holder force on non-isothermal stamp forming of a self-reinforced composite

  • Kalyanasundaram, Shankar;Venkatesan, Sudharshan
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.29-43
    • /
    • 2016
  • Composite materials are rapidly gaining popularity as an alternative to metals for structural and load bearing applications in the aerospace, automotive, alternate energy and consumer industries. With the advent of thermoplastic composites and advances in recycling technologies, fully recyclable composites are gaining ground over traditional thermoset composites. Stamp forming as an alternative processing technique for sheet products has proven to be effective in allowing the fast manufacturing rates required for mass production of components. This study investigates the feasibility of using the stamp forming technique for the processing of thermoplastic, recyclable composite materials. The material system used in this study is a self-reinforced polypropylene composite material (Curv$^{(R)}$). The investigation includes a detailed experimental study based on strain measurements using a non-contact optical measurement system in conjunction with stamping equipment to record and measure the formability of the thermoplastic composites in real time. A Design of Experiments (DOE) methodology was adopted to elucidate the effect of process parameters that included blank holder force, pre heat temperature and feed rate on stamp forming. DOE analyses indicate that feed rate had negligible influence on the strain evolution during stamp forming and blank holder force and preheat temperature had significant effect on strain evolution during forming.

Damage Monitoring of CP-GFRP/GFRP Composites by Measuring Electrical Resistance

  • Shin, Soon-Gi;Kwon, Yong-Jung
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.148-154
    • /
    • 2010
  • It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

Effects of Matrix Strength, Fiber Type, and Fiber Content on the Electrical Resistivity of Steel-Fiber-Reinforced Cement Composites During Fiber Pullout (매트릭스 강도, 섬유 형식 및 보강량에 강섬유 보강 시멘트 복합재료의 인발시 전기저항에 미치는 영향)

  • Le, Huy Viet;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.675-689
    • /
    • 2019
  • Development of smart construction materials with both self-strain and self-damage sensing capacities is still difficult because of little information about the self-damage sensing source. Herein, we investigate the effects of the matrix strength, fiber geometry, and fiber content on the electrical resistivity of steel-fiber-reinforced cement composites by multi-fiber pullout testing combined with electrical resistivity measurements. The results reveal that the electrical resistivity of steel-fiber-reinforced cement composites clearly decreased during fiber-matrix debonding. A higher fiber-matrix interfacial bonding generally leads to a higher reduction in the electrical resistivity of the composite during fiber debonding due to the change in high electrical resistivity phase at the fiber-matrix interface. Higher matrix strengths, brass-coated steel fibers, and deformed steel fibers generally produced higher interfacial bond strengths and, consequently, a greater reduction in electrical resistivity during fiber debonding.

Crack Initiation and Temperature Variation Effects on Self-sensing Impedance Responses of FRCCs (FRCCs의 자가센싱 임피던스 응답에 미치는 균열 발생 및 온도 변화 영향성)

  • Kang, Myung-Soo;Kang, Man-Sung;Lee, Han Ju;Yim, Hong Jae;An, Yun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.69-74
    • /
    • 2018
  • Fiber-Reinforced Cementitious Composites (FRCCs) have electrical conductivity by inserting reinforced conductive fibers into a cementitious matrix. Such characteristic allows us to utilize FRCCs for crack monitoring of a structure by measuring electrical responses without sensor installation. However, the electrical responses are often sensitively altered by temperature variation as well as crack initiation. The temperature variation may disturb crack detection on the measured electrical responses. Moreover, as sensing probes for measuring electrical reponses increase, undesired contact noises are often augmented. In this paper, a self-sensing impedance circuit is specially designed for reducing the number of sensing probes. The crack initiation and temperature variation effects on the self-sensing impedance responses of FRCCs are experimentally investigated using the self-sensing impedance circuit. The experiment results reveal that the electrical impedance response are more sensitively changed due to temperature variation than crack initiation.

Damage Detection in Fiber Reinforced Composites Containing Electrically Conductive Phases

  • Shin, Soon-Gi;Hideaki Matsubara
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Fiber reinforced plastic (FRP) composites and ceramic matrix composites (CMC) which contain electrically conductive phases have been designed and fabricated to introduce the detection capability of damage/fracture detection into these materials. The composites were made electrically conductive by adding carbon and TiN particles into FRP and CMC, respectively. The resistance of the conductive FRP containing carbon particles showed almost linear response to strain and high sensitivity over a wide range of strains. After each load-unload cycle the FRP retained a residual resistance, which increased with applied maximum stress or strain. The FRP with carbon particles embedded in cement (mortar) specimens enabled micro-crack formation and propagation in the mortar to be detected in situ. The CMC materials exhibited not only sensitive response to the applied strain but also an increase in resistance with increasing number of load-unload cycles during cyclic load testing. These results show that it is possible to use these composites to detect and/or fracture in structural materials, which are required to monitor the healthiness or safety in industrial applications and public constructions.

  • PDF

Preparation of Titanium Carbide Fiber-Reinforced Alumina Ceramic Matrix Composites by Self-Propagating High-Temperature Synthesis

  • Yun, Jondo;Bang, Hwancheol
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.171-175
    • /
    • 1998
  • $Al_2O_3$-TiC composites were prepared from aluminum, titanium oxide, and carbon fibers by self-propagating high-temperature synthesis(SHS). After the SHS reaction, the TiC phase in the sample was found either fibrous or non-fibrous shape. The fraction of the fibrous TiC phase varied with the amount of $Al_2O_3$ diluent addition. The optimum amount of diluent to make fibrous carbide was determined to be 30%. The fibers were hollow inside and made of multiple grains with a composition of titanium carbide. The hollow fiber formation mechanism was suggested and discussed. The synthesized powders were consolidated to dense composites by hot pressing at $1750^{\circ}C$ under 30 MPa.

  • PDF

Propagation of Elastic Waves in Fiber Reinforced Composites (섬유강화 복합재료 내의 탄성파 전파)

  • Kim, Jin-Yeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.65-72
    • /
    • 1996
  • A dynamic self-consistent method previously proposed and validated for the composites containing spherical inclusions is applied to the simplest two dimensional problems : SH wave propagation in unidirectional fiber reinforced composites. The self-consistent conditions for SH wave are derived without limitation on frequency and the wave speed and coherent attenuation are calculated for two composites. THe results of the present theory are compared with those of the multiple scattering theories and another self-consistent theory. At low volume fractions, the present theoretical results coincide with those of the multiple scattering theory using exact pair-correlation function, whereas the results based on another self-consistent theory deviate markedly from the others. As the volume fraction increases, the three theories give different results although they have qualitatively similar trends. The present theoretical results for composites considered in this paper exhibit less dispersion and physically realizable attenuation. An important observation is that the multiple scattering theory predicts vanishingly small attenuation at low frequency with volume fraction is high.

  • PDF