DOI QR코드

DOI QR Code

Crack Initiation and Temperature Variation Effects on Self-sensing Impedance Responses of FRCCs

FRCCs의 자가센싱 임피던스 응답에 미치는 균열 발생 및 온도 변화 영향성

  • 강명수 (세종대학교 건축공학과) ;
  • 강만성 (세종대학교 건축공학과) ;
  • 이한주 (경북대학교 건설방재공학부) ;
  • 임홍재 (경북대학교 건설방재공학부) ;
  • 안윤규 (세종대학교 건축공학과)
  • Received : 2018.02.20
  • Accepted : 2018.02.22
  • Published : 2018.05.01

Abstract

Fiber-Reinforced Cementitious Composites (FRCCs) have electrical conductivity by inserting reinforced conductive fibers into a cementitious matrix. Such characteristic allows us to utilize FRCCs for crack monitoring of a structure by measuring electrical responses without sensor installation. However, the electrical responses are often sensitively altered by temperature variation as well as crack initiation. The temperature variation may disturb crack detection on the measured electrical responses. Moreover, as sensing probes for measuring electrical reponses increase, undesired contact noises are often augmented. In this paper, a self-sensing impedance circuit is specially designed for reducing the number of sensing probes. The crack initiation and temperature variation effects on the self-sensing impedance responses of FRCCs are experimentally investigated using the self-sensing impedance circuit. The experiment results reveal that the electrical impedance response are more sensitively changed due to temperature variation than crack initiation.

Fiber-Reinforced Cementitious Composites (FRCCs)는 시멘트 복합체에 혼입한 전도성 섬유로 인해 전기 전도성을 가진다. 이러한 특성은 전기적 응답 계측을 통하여 별도의 센서 설치가 필요 없는 구조물의 균열 모니터링을 가능하게 한다. 하지만 전기적 응답은 균열 발생뿐만 아니라 온도의 변화에도 민감하게 변화하기 때문에 온도 요인은 전기적 응답 계측을 통한 균열 탐지를 방해하는 요소로 작용할 수 있다. 더욱이 전기적 응답을 측정하기 위한 탐침의 개수가 증가 할수록 원하지 않은 접촉 노이즈가 발생하기 때문에 이 논문에서는 탐침의 개수를 줄이기 위해 자체적인 자가센싱 임피던스 회로를 설계하였다. FRCC의 균열 발생과 온도 변화가 임피던스에 미치는 영향성은 자가센싱 임피던스 회로를 이용해 실험적으로 측정되었으며, 실험 결과, 임피던스 응답은 균열 발생보다 온도 변화에 더 민감하게 변화됨을 알 수 있었다.

Keywords

References

  1. An Y. K., Sohn H. (2012), Integrated Impedance and Guided Wave based Damage Detection, Mechanical Systems and Signal Processing, Elsevier, 28, 50-62. https://doi.org/10.1016/j.ymssp.2011.11.016
  2. Chen P. W., Chung D. D. L. (1993), Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection, Smart Materials and Structures, Elsevier, 2, 22-30. https://doi.org/10.1088/0964-1726/2/1/004
  3. Gowers K., Millard S. (1999), Measurement of Concrete Resistivity for Assessment of Corrosion, ACI Materials Journal, ACI, 96-M66.
  4. Han B., Ding S., Yu X. (2015), Intrinsic self-sensing concrete and structures, Measurement, Elsevier, 59, 110-128. https://doi.org/10.1016/j.measurement.2014.09.048
  5. Jingyao C., Chung D. D. L. (2004), Electric polarization and depolarization in cement-based materials, studied by apparent electrical resistance measurement. Cement and Concrete Research, Elsevier, 34, 481-485. https://doi.org/10.1016/j.cemconres.2003.09.003
  6. Kazuro K., Hideaki M., Isamu O., Makoto K., Keiichi N., Yuichi M., Fumio M. (2005), Acoustic emission monitoring of a reinforced concrete structure by applying new fiber-optic sensors, Smart Materials and Structures, Elsevier, 14(3), 52-59.
  7. Kim D. J., Park S. H., Ryu G. S., Koh K. T. (2011), Comparative flexural behavior of hybrid ultra high performance fiber reinforced with different macro fibers, Construction and Building Materials, Elsevier, 25(11), 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051
  8. Koch C., German Paal S., Rashidi A., Zhu Z., Konig M., Brilakis I. (2016), Achievements and Challenges in Machine Vision-Based Inspection of Large Concrete Structures, Advances in Structural Engineering, SAGE journals, 17, 3-10.
  9. Lataste J. F., Behloul M., Breysse D. (2008), Characterisation of fibers distribution in a steel fiber reinforced concrete with electrical resistivity measurements, NDT & E International, Elsevier 41(8), 638-647. https://doi.org/10.1016/j.ndteint.2008.03.008
  10. Lataste J. F., Sirieix C., Breysse D., Frappa M. (2003), Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering, NDT & E International, Elsevier, 36(6), 383-394. https://doi.org/10.1016/S0963-8695(03)00013-6
  11. Lecompte D., Vantomme J., Sol H. (2006), Crack detection in a concrete beam using two different camera techniques, Structural Health Monitoring, J-Stage, 5(1), 59-68. https://doi.org/10.1177/1475921706057982
  12. Lee S. J., Sohn H. (2006), Active self-sensing scheme development for structural health monitoring, Smart Materials and Structures, Elsevier, 15, 1734-1746. https://doi.org/10.1088/0964-1726/15/6/028
  13. Meehan D. G., Wang S., Chung D. D. L. (2010), Electrical resistance based sensing of impact damage in carbon fiber reinforced cement-based materials. Journal of Intelligent Material Systems and Structures, SAGE journals, 21(1), 83-105. https://doi.org/10.1177/1045389X09354786
  14. Metni N., Hamel T. (2006), A UAV for bridge inspection: Visual servoing control law with orientation limits, Automation in Construction, Elsevier, 17, 3-10.
  15. Park S. H., Kim D. J., Ryu G. S., Koh K. T. (2011), Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cement and Concrete Composites, Elsevier, 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  16. Song J., Nguyen D. L., Manathamsombat C., KIM D. J. (2015), Effect of fiber volume content on electromechanical behavior of strain-hardening steel-fiber-reinforced cementitious composites. Journal of Composite Materials, SAGE Journals, 49(29), 3621-3634. https://doi.org/10.1177/0021998314568169
  17. Song P. S., Hwang S. (2004), Mechanical properties of high-strength steel fiber-reinforced concrete, Construction and Building Materials, Elsevier, 18, 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  18. Verstrynge E., Pfeiffer H., Wevers M. (2014), A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors, Smart Materials and structures, Elsevier, 23(6), 1-9.
  19. Wen S., Chung D. D. L. (2007), Electrical resistance based damage self-sensing in carbon fiber reinforced cement, Carbon, Elsevier, 45(4), 710-716. https://doi.org/10.1016/j.carbon.2006.11.029
  20. Yang Y., Hu Y. (2008), Sensitivity of PZT impedance sensors for damage detection of concrete structures, Sensors, MDPI, 8(1), 327-346. https://doi.org/10.3390/s8010327