• 제목/요약/키워드: self-heating

검색결과 272건 처리시간 0.024초

Regulation of Star Formation Rates in Multiphase Galactic Disks: Numerical Tests of the Thermal/Dynamical Equilibrium Model

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • Using two-dimensional numerical hydrodynamic simulations, we investigate the regulation of star ormation rates in turbulent, multiphase, galactic gaseous disks. Our simulation domain is xisymmetric, and local in the radial direction and global in the vertical direction. Our models nclude galactic rotation, vertical stratification, self-gravity, heating and cooling, and thermal onduction. Turbulence in our models is driven by momentum feedback from supernova events ccurring in localized dense regions formed by thermal and gravitational instabilities. Self-onsistent radiative heating, representing enhanced/reduced FUV photons from the star formation, s also taken into account. Evolution of our model disks is highly dynamic, but reaches a quasi-teady state. The disks are overall in effective hydrostatic equilibrium with the midplane thermal ressure set by the vertical gravity. The star formation rate is found to be proportional pproximately linearly to the midplane thermal pressure. These results are in good agreement with the predictions of a recent theory by Ostriker, McKee, and Leroy (2010) for the thermal/dynamic equilibrium model of star formation regulation.

  • PDF

다결정 실리콘 박막 트렌지스터의 self-heating 효과를 감소시키기 위한 ILD 구조 개선 (ILD(Inter-layer Dielectric) engineering for reduction of self-heating effort in poly-Si TFT)

  • 박수정;문국철;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.134-136
    • /
    • 2002
  • 유리기판 위에서 제작된 다결정 실리콘 TFT(Thin Film Transistor) 에서는 열전도율이 낮은 실리콘 산화막 같은 물질이 사용되기 때문에 열에 대해서 낮은 임계점을 갖는다. 이로 인하여. 게이트와 드레인에 높은 전압이 걸리는 조건에서 동작시킬 경우에는 다결정 실리콘 TFT에서의 열화 현상이 두드러지게 나타나게 된다. 그러나, 열전도율이 실리콘 산화막(SiO2) 보다 열배 이상 높은 실리콘 질화막(SiNx)을 ILD(inter-layer dielectric) 재료로 사용했을 때 같은 스트레스 조건에서 다결정 실리콘의 신뢰성이 개선되는 것을 확인할 수 있었다.

  • PDF

Spindt Cathode Tip Processing to Enhance Emission Stability and High-Current Performance

  • Spindt, C.A.;Schwoebel, P.R.;Holland, C.E.
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.44-47
    • /
    • 2001
  • The extracted field emission current can be used to controllably heat microfabricated cold field emission cathode tips. The heating can be sufficient to smooth and recrystallize the tip surface by surface self-diffusion, and at least partially clean the surface of contaminants by thermal desorption. Self-heating not only allows for the achievement and maintenance of stable emission characteristics, but can be used to make the current-voltage characteristics of microfabricated field emitter tips nearly identical to one another. The resulting improvement in emission uniformity will allow for more reliable array operation at increased electron emission current densities.

  • PDF

A Study on the Heat Transfer Characteristics of a Self-Oscillating Heat Pipe

  • Yoon, Seok-Hun;Cheol Oh;Park, Jae-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권3호
    • /
    • pp.354-362
    • /
    • 2002
  • In this paper, the heat transfer characteristics of a self-oscillating heat pipe are experimentally investigated for the effect of various working fluid fill charge ratios and heat loads. The characteristics of temperature oscillations of the working fluid are also analysed based on chaotic dynamics. The heat pipe is composed of a heating section, a cooling section and an adiabatic section, and has a 0.002m internal diameter, a 0.34m length in each turn and consists of 19 turns. The heating and the cooling portion of each turn has a length of 70mm. A series of experiments was carried out to measure the temperature distributions and the pressure variations of the heat pipe. Furthermore, heat transfer performance, effective thermal conductivity, boiling heat transfer and condensation heat transfer coefficients are calculated for various operating conditions. Experimental results show the efficacy of this type of heat pipe.

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.623-632
    • /
    • 2007
  • Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

INFRARED SPECTRAL ENERGY DISTRIBUTION OF GALAXIES IN THE AKARI ALL SKY SURVEY: CORRELATIONS WITH GALAXY PROPERTIES AND THEIR PHYSICAL ORIGIN

  • Makiya, R.;Totani, T.;Takeuchi, T.T.;Nagashima, M.;Kobayashi, M.A.R.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.325-329
    • /
    • 2012
  • We will report our recent study on the properties of more than 1,600 galaxies detected by the AKARI All-Sky Survey with physical quantities based on optical and 21-cm observations, to understand the physics determining the infrared spectral energy distribution (Totani et al., 2011). We discover a tight linear correlation for normal star-forming galaxies between the radiation field strength of dust heating (corresponding to dust temperature) and the galactic-scale infrared radiation field, $L_{TIR}/R^2$. This is the tightest correlation of dust temperature ever known, and the dispersion along the mean relation is 13% in dust temperature. This relation can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. We also find that the number of galaxies sharply drops when galaxies become optically thin against dust-heating radiation, indicating that a feedback process to galaxy formation (e.g., by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. We discuss implications from these findings for the $M_{H_I}$ -size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.

A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications

  • Park, Chang-Hyun;Oh, Myung-Hwan;Kang, Hee-Sung;Kang, Ho-Kyu
    • ETRI Journal
    • /
    • 제26권6호
    • /
    • pp.575-582
    • /
    • 2004
  • Fully-depleted silicon-on-insulator (FD-SOI) devices with a 15 nm SOI layer thickness and 60 nm gate lengths for analog applications have been investigated. The Si selective epitaxial growth (SEG) process was well optimized. Both the single- raised (SR) and double-raised (DR) source/drain (S/D) processes have been studied to reduce parasitic series resistance and improve device performance. For the DR S/D process, the saturation currents of both NMOS and PMOS are improved by 8 and 18%, respectively, compared with the SR S/D process. The self-heating effect is evaluated for both body contact and body floating SOI devices. The body contact transistor shows a reduced self-heating ratio, compared with the body floating transistor. The static noise margin of an SOI device with a $1.1\;{\mu}m^2$ 6T-SRAM cell is 190 mV, and the ring oscillator speed is improved by 25 % compared with bulk devices. The DR S/D process shows a higher open loop voltage gain than the SR S/D process. A 15 nm ultra-thin body (UTB) SOI device with a DR S/D process shows the same level of noise characteristics at both the body contact and body floating transistors. Also, we observed that noise characteristics of a 15 nm UTB SOI device are comparable to those of bulk Si devices.

  • PDF

Self Heating Effects in Sub-nm Scale FinFETs

  • Agrawal, Khushabu;Patil, Vilas;Yoon, Geonju;Park, Jinsu;Kim, Jaemin;Pae, Sangwoo;Kim, Jinseok;Cho, Eun-Chel;Junsin, Yi
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.88-92
    • /
    • 2020
  • Thermal effects in bulk and SOI FinFETs are briefly reviewed herein. Different techniques to measure these thermal effects are studied in detail. Self-heating effects show a strong dependency on geometrical parameters of the device, thereby affecting the reliability and performance of FinFETs. Mobility degradation leads to 7% higher current in bulk FinFETs than in SOI FinFETs. The lower thermal conductivity of SiO2 and higher current densities due to a reduction in device dimensions are the potential reasons behind this degradation. A comparison of both bulk and SOI FinFETs shows that the thermal effects are more dominant in bulk FinFETs as they dissipate more heat because of their lower lattice temperature. However, these thermal effects can be minimized by integrating 2D materials along with high thermal conductive dielectrics into the FinFET device structure.