• 제목/요약/키워드: self-adjoint

검색결과 71건 처리시간 0.022초

SELF-ADJOINT INTERPOLATION ON Ax = y IN ALG$\cal{L}$

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.981-986
    • /
    • 2011
  • Given vectors x and y in a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equations $Tx_i=y_i$, for i = 1, 2, ${\cdots}$, n. In this paper the following is proved : Let $\cal{L}$ be a subspace lattice on a Hilbert space $\cal{H}$. Let x and y be vectors in $\cal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE=EP_x$ for each $E{\in}\cal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\cal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and $A=A^*$. (2) sup $sup\;\{\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}\;:\;E\;{\in}\;{\cal{L}}\}$ < ${\infty}$, $y\;{\in}\;sp(x)$ and < x, y >=< y, x >.

회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법 (An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems)

  • 홍성욱;박종혁
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

복합재료적층판의 진동해석을 위한 유한요소모델 I. 변분원리의 유도 (Finite Element Analysis for Vibration of Laminated Plate Using a Consistent Discrete Theory Part I : Variational Principles)

  • 홍순조
    • 전산구조공학
    • /
    • 제7권4호
    • /
    • pp.85-101
    • /
    • 1994
  • 적층판의 동적거동에 대한 유한요소해석모델개발을 목적으로 전단변형을 적합하게 고려한 적층판이론에 대한 변분원리를 유도하였다. 유도방법은 Sandhu 등에 의해 개발된 다변수 경계치문제의 변분원리이론을 따랐으며, 지배방정식의 미분연산자 매트릭스를 self-adjoint로 만들기 위하여 convolution을 이중선형사상으로 사용하였다. 유도된 적층판의 범함수에는 경계조건, 초기조건뿐만 아니라 유한요소해석모델에서 생길 수 있는 요소간 불연속조건도 포함시킬 수 있다. 상태변수의 적합함수공간을 확장하거나 특정조건을 적용하므로서 다양한 형태의 범함수를 유도할 수 있으며, 이를 통해 다양한 유한요소해석모델의 개발이 가능함을 논하였다.

  • PDF

ADDITIVE MAPPINGS ON OPERATOR ALGEBRAS PRESERVING SQUARE ABSOLUTE VALUES

  • TAGHAVI, A.
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.51-57
    • /
    • 2001
  • Let $\mathcal{B}(H)$ and $\mathcal{B}(K)$ denote the algebras of all bounded linear operators on Hilbert spaces $\mathcal{H}$ and $\mathcal{K}$, respectively. We show that if ${\phi}:\mathcal{B}(H){\rightarrow}\mathcal{B}(K)$ is an additive mapping satisfying ${\phi}({\mid}A{\mid}^2)={\mid}{\phi}(A){\mid}^2$ for every $A{\in}\mathcal{B}(H)$, then there exists a mapping ${\psi}$ defined by ${\psi}(A)={\phi}(I){\phi}(A)$, ${\forall}A{\in}\mathcal{B}(H)$ such that ${\psi}$ is the sum of $two^*$-homomorphisms one of which C-linear and the othere C-antilinear. We will also study some conditions implying the injective and rank-preserving of ${\psi}$.

  • PDF

ABSTRACT RANDOM LINEAR OPERATORS ON PROBABILISTIC UNITARY SPACES

  • Tran, Xuan Quy;Dang, Hung Thang;Nguyen, Thinh
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.347-362
    • /
    • 2016
  • In this paper, we are concerned with abstract random linear operators on probabilistic unitary spaces which are a generalization of generalized random linear operators on a Hilbert space defined in [25]. The representation theorem for abstract random bounded linear operators and some results on the adjoint of abstract random linear operators are given.

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • 제8권2호
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF

COMPACT TOEPLITZ OPERATORS

  • Kang, Si Ho
    • 호남수학학술지
    • /
    • 제35권3호
    • /
    • pp.343-350
    • /
    • 2013
  • In this paper we prove that if Toeplitz operators $T^{\alpha}_u$ with symbols in RW satisfy ${\parallel}uk^{\alpha}_z{\parallel}_{s,{\alpha}{\rightarrow}0$ as $z{\rightarrow}{\partial}\mathbb{D}$ then $T^{\alpha}_u$ is compact and also prove that if $T^{\alpha}_u$ is compact then the Berezin transform of $T^{\alpha}_u$ equals to zero on ${\partial}\mathbb{D}$.

ON NUMERICAL RANGE AND NUMERICAL RADIUS OF CONVEX FUNCTION OPERATORS

  • Zaiz, Khaoula;Mansour, Abdelouahab
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.879-898
    • /
    • 2019
  • In this paper we prove some interesting inclusions concerning the numerical range of some operators and the numerical range of theirs ranges with a convex function. Further, we prove some inequalities for the numerical radius. These inclusions and inequalities are based on some classical convexity inequalities for non-negative real numbers and some operator inequalities.

Acceleration of the Time-Dependent Radiative Transfer Calculations using Diffusion Approximation

  • Noh, Tae-Wan
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 2004년도 추계학술발표회 발표논문집
    • /
    • pp.151-152
    • /
    • 2004
  • An acceleration technique combined with the discrete ordinates method which has been widely used in the solution of neutron transport phenomena is applied to the solution of radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new linearization method is developed to avoid the nonlinearity of the material temperature equation. This new acceleration method is applied to the well known Marshak wave problem, and the numerical result is compared with that of a non-accelerated calculation

  • PDF

GENERALIZED JENSEN'S EQUATIONS IN A HILBERT MODULE

  • An, Jong Su;Lee, Jung Rye;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.135-148
    • /
    • 2007
  • We prove the stability of generalized Jensen's equations in a Hilbert module over a unital $C^*$-algebra. This is applied to show the stability of a projection, a unitary operator, a self-adjoint operator, a normal operator, and an invertible operator in a Hilbert module over a unital $C^*$-algebra.

  • PDF