• Title/Summary/Keyword: self-adjoint

Search Result 71, Processing Time 0.021 seconds

TRIVIALITY OF A TRACE ON THE SPACE OF COMMUTING TRACE-CLASS SELF-ADJOINT OPERATORS

  • Myung, Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1205-1211
    • /
    • 2010
  • In the present article, we investigate the possibility of a real-valued map on the space of tuples of commuting trace-class self-adjoint operators, which behaves like the usual trace map on the space of trace-class linear operators. It turns out that such maps are related with continuous group homomorphisms from the Milnor's K-group of the real numbers into the additive group of real numbers. Using this connection, it is shown that any such trace map must be trivial, but it is proposed that the target group of a nontrivial trace should be a linearized version of Milnor's K-theory as with the case of universal determinant for commuting tuples of matrices rather than just the field of constants.

POSITIVE SOLUTIONS OF SELF-ADJOINT BOUNDARY VALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS AT RESONANCE

  • Yang, Aijun;Ge, Weigao
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.407-414
    • /
    • 2008
  • In this paper, we study the self-adjoint second order boundary value problem with integral boundary conditions: (p(t)x'(t))'+f(t,x(t))=0, t $${\in}$$ (0,1), x'(0)=0, x(1) = $${\int}_0^1$$ x(s)g(s)ds. A new result on the existence of positive solutions is obtained. The interesting points are: the first, we employ a new tool-the recent Leggett-Williams norm-type theorem for coincidences; the second, the boundary value problem is involved in integral condition; the third, the solutions obtained are positive.

  • PDF

Application of Discrete-Ordinate Method to the Time Dependent Radiative Heat Transfer Calculations (방향차분법을 적용한 시간종속 복사 열전달 계산)

  • Noh, Tae-Wan
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.250-255
    • /
    • 2006
  • In this study, the discrete ordinates method which has been widely used in the solution of neutron transport equation is applied to the solution of the time dependent radiative transfer equation. The self-adjoint form of the second order radiation intensity equation is used to enhance the stability of the solution, and a new multi-step linearization method is developed to avoid the nonlinearity in the material temperature equation. This new solution method is applied to the well known Marshak wave problem, and the numerical result is compared with that of the conventional Monte-Carlo method.

NEW EXTENSION FOR REVERSE OF THE OPERATOR CHOI-DAVIS-JENSEN INEQUALITY

  • Baharak Moosavi;Mohsen Shah Hosseini
    • Honam Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.123-129
    • /
    • 2023
  • In this paper, we introduce the reverse of the operator Davis-Choi-Jensen's inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if $A,\;B{\in}{\mathcal{B}}({\mathcal{H}})$ are self-adjoint operators with the spectra contained in the interval [m, M] with m < M and A ≤ B, then for any $r{\geq}{\frac{1}{t}}>1,\,t{\in}(0,\,1)$ $A^r{\leq}({\frac{M1_{\mathcal{H}}-A}{M-m}}m^{rt}+{\frac{A-m1_{\mathcal{H}}}{M-m}}M^{rt}){^{\frac{1}{t}}}{\leq}K(m,\;M,\;r)B^r,$ where K (m, M, r) is the generalized Kantorovich constant.

A STUDY ON GENERALIZED QUASI-CLASS A OPERATORS

  • Kim, Geon-Ho;Jeon, In-Ho
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.155-159
    • /
    • 2009
  • In this paper, we consider the operator T satisfying $T^{*k}({\mid}T^2{\mid}-{\mid}T{\mid}^2)T^k{\geq}0$ and prove that if the operator is injective and has the real spectrum, then it is self-adjoint.

  • PDF

JULIA OPERATORS AND LINEAR SYSTEMS (NONUNIQUENESS OF LINEAR SYSTEMS)

  • Yang, Mee-Hyea
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 1996
  • Complementation theory in krein spaces can be extended for any self-adjoint transformation. There is a close relation between Julia operators and linear systems. The theory of Julia operators can be used to construct distinct Krein spaces which are the state spaces of extended canonical linear systems with given transfer function.

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.

SELF-ADJOINT INTERPOLATION PROBLEMS IN ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.387-395
    • /
    • 2004
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{i}\;=\;Y_{i}$, for i = 1,2,...,n. In this article, we showed the following: Let H be a Hilbert space and let L be a subspace lattice on H. Let X and Y be operators acting on H. Assume that range(X) is dense in H. Then the following statements are equivalent: (1) There exists an operator A in AlgL such that AX = Y, $A^{*}$ = A and every E in L reduces A. (2) sup ${\frac{$\mid$$\mid${\sum_{i=1}}^n\;E_iYf_i$\mid$$\mid$}{$\mid$$\mid${\sum_{i=1}}^n\;E_iXf_i$\mid$$\mid$}$:n{\epsilon}N,f_i{\epsilon}H\;and\;E_i{\epsilon}L}\;<\;{\infty}$ and = for all E in L and all f, g in H.