• 제목/요약/키워드: self ignition temperature

검색결과 47건 처리시간 0.024초

에폭시 성형 점화코일의 인가전압에 따른 부분 방전 온도 의존성 (Temperature Dependence on the Partial Discharge of Epoxy Molding Ignition Coil According to Applied Voltage)

  • 신종열;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제28권2호
    • /
    • pp.85-91
    • /
    • 2015
  • A gasoline engine automobile uses high voltage generation of the ignition coil, igniting and burning mixed fuel in the combustion chamber, which drives the engine. When the electronic control unit intermits a current supplied to the power transistor, counter electromotive force with a low voltage is generated by self induction action in the ignition primary coil and a high voltage is induced by mutual induction action with the primary ignition coil in the second ignition coil. The high voltage is supplied to the ignition plug in the combustion chamber, causing a spark, igniting the compressed mixed fuel. If a very small defect occurs inside the insulating material when a voltage is applied in said ignition coil, the performance of the insulation material will get worse and breakdown by a partial discharge of corona discharge. Thus, in this experiment, we are to contribute to improve the performance and ensure the reliability of the ignition coil by investigating partial discharge characteristics according to the change of voltage and temperature when a voltage is applied to the specimen of the epoxy molding ignition coil.

냉시동시 압축착화 조건의 상관관계에 관한 수소 HCCI 기관의 실험적 연구 (An Experimental Study on Correlation of Compression Ignition Condition at Cold Start with Hydrogen HCCI Engine)

  • 이광주;이종구;안병호;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.628-633
    • /
    • 2012
  • It was found that the pure hydrogen-air pre-mixture was self-ignited at a high compression ratio without any assisting method in room temperature, thus refuting the preconception that compression ignition of hydrogen engine was impossible. Therefore, in order to analyze the correlation of compression ignition condition at cold start with hydrogen HCCI engine clearly, the possibility of compression igniting compression ratio is investigated with the change of equivalence ratio and engine speed, experimentally. As the results, it is confirmed that the possibility of compression-igniting compression ratio at cold start was decreased by increasing equivalence ratio due to decreasing auto-ignition temperature. In addition, it is grasped that the possibility of compression-igniting compression ratio at cold start is decreased around 14.9% by increasing engine speed at same supply energy.

분사시기의 변화에 따른 제어자발화 가솔린기관의 배기특성 (An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine According to Variation of the Injection Timing)

  • 김홍성
    • 동력기계공학회지
    • /
    • 제8권3호
    • /
    • pp.5-10
    • /
    • 2004
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine which has the ultra lean-burn with self-ignition of gasoline fuel can be achieved by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

공기연료비의 변화에 따른 제어자발화 가솔린기관의 배기 특성 (An Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Air-Fuel Ratio)

  • 김홍성
    • 한국기계가공학회지
    • /
    • 제3권2호
    • /
    • pp.79-85
    • /
    • 2004
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. Investigated are the engine emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to $180^{\circ}C$ in the inlet-air temperature. A controlled auto-ignition gasoline engine can be achieved the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxides had been significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

A Study on the Behavior of Combustion Wave Propagation and the Structure of Porous TiNi Body during Self-propagating High-temperature Synthesis Process

  • Kim, Ji-Soon;Gjuntera, Victor E.;Kim, Jin-Chun;Kwon, Young-Soon
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2010
  • We produced cylindrical porous TiNi bodies by Self-propagating High-temperature Synthesis (SHS) process, varying the heating schedule prior to ignition of a loose preform compact made from (Ti+Ni) powder mixture. To investigate the effect of the heating schedule on the behaviour of combustion wave propagation and the structure of porous TiNi shape-memory alloy (SMA) body, change of temperature in the compact during SHS process was measured as a function of time and used for determining combustion temperature and combustion wave velocity. Microstructure of produced porous TiNi SMA body was observed and the results were discussed with the combustion characteristics. From the results it was concluded that the final average pore size could be controlled either by the combustion wave velocity or by the average temperature of the preform compact prior to ignition.

영동지역 주요 수종별 낙엽과 생엽의 착화특성에 관한 연구 (The Ignition Characteristics of Dead Leaves and Living Leaves of Various Trees in Young Dong Forest Areas)

  • 박영주;이시영;신영주;김수영;김영탁;이해평
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.298-302
    • /
    • 2008
  • 본 연구에서는 강원도 영동지역 주요 7가지 수종의 낙엽과 생엽을 대상으로 착화특성을 고찰하고자 강우 전과 후의 연료를 채취하여 연료의 함수율과 가연성과의 관계, KRS-RG-9000을 사용하여 착화특성을 고찰하였다. 시험결과 침엽수 낙엽은 강우 후 대기노출로부터 상온에서 144시간 경과 시 함수율이 10% 이하로 건조되어 가연성 물질이 발생할 수 있을 정도로 건조됨을 알 수 있었으며 활엽수는 자연발화온도가 높게 나타남에 따라 저온에서 착화지연시간이 길게 나타나 침엽수보다 내화력이 강함을 알 수 있었다.

  • PDF

SHS 법에 의한 Magnesia-Alumina Spinel 제조와 특성 (Preparation and Properties of Magnesia-Alumina Spinel by SHS)

  • 최태현;전병세
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.235-241
    • /
    • 1996
  • Self-Propagating high temperature synthesis(SHS) technique was used to synthesize the spinel phase of MgAl2O from MgO and Al powder. Processing factors such as mixing time preheating temperature and ignition catalyst were varied to determine the optimum condition to form MgAl2O4 phase. The reaction products were heat treated at the temperature range of 120$0^{\circ}C$ and 150$0^{\circ}C$. to observe phase transformation of unreacted materials. Processing factors such as 48 hrs-mixing 80$0^{\circ}C$-preheating and 20wt% KNO3-ignition catalyst were effective of the formation of MgAl2O spinel. An activation energy 49.7kcal/mol. was calculated to form a MaAl2O4 spinel from unreacted materials.

  • PDF

A Study on the Characteristics of Soot Formation and Oxidation in Free Fuel Droplet Array

  • Lee, Myung-Jun;Kim, Jong-Youl;Yeom, Jeong-Kuk;Ha, Jong-Yul;Chung, Sung-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권6호
    • /
    • pp.851-860
    • /
    • 2002
  • In this study, it was attempted to obtain the fundamental data for the formation and oxidation of soot from a diesel engine. Combustion of spray injected into a cylinder is complex phenomenon having physical and chemical processes, and these processes affect each other. There are many factors in the mechanism of the formation and oxidization of soot and it is necessary to observe spray combustion microscopically. In order to observe with that view, free fuel droplet array was used as an experimental object and the droplet array was injected into an atmospheric combustion chamber with high temperature. Ambient temperature of the combustion chamber, interdroplet spacing, and droplet diameter were selected as parameters, which affect the formation and oxidation of soot. In this study, it was found that the parameters also affect ignition delay of droplet. The ambient temperature especially affected the ignition delay of droplet as well as the flame temperature after self-ignition. As the interdroplet spacing that means the local equivalence ratio in a combustion chamber was narrow, formation of soot was increased. As diameter of droplet was large, surface area of the droplet was also broad, and hence evaporation of the droplet was more active than that of a droplet with relative small diameter.

추진제 KM30Al의 저장 온도/습도와 저장수명과 관계 고찰 (A Study on the Effect of Storing Temperature and Humidity upon the Self Life of Propellant KM30Al)

  • 조기홍
    • 한국군사과학기술학회지
    • /
    • 제9권1호
    • /
    • pp.13-23
    • /
    • 2006
  • A propellant mainly consisting of nitric ester including nitrocellulose and nitroglycerine is characteristic of being decomposed naturally. And this phenomenon is known as being affected mostly by its storing temperature and humidity. In this research, the effect of storing temperature and humidity on self life has been studied by measuring the contained quantity of residual stabilizer of propellant KM30Al, which are parts of 155MM propelling charge K676 and K677; the method for the measurement is acceleration aging test, and decomposition reaction equation, Eyring Equation and Berthlot Equation were used for the calculation. As result of this study, it was found that the storing temperature influenced seven times as large as the storing humidity upon the self life of the propellant KM30Al, Furthermore, especially in the high temperature region, the storing temperature had a dominant effect on the self life.

튜브 직경에 따른 고압 수소의 자발 점화 현상에 대한 연구 (Investigation on the Self-ignition of High-pressure Hydrogen in a Tube between Different Inner Diameter)

  • 김세환;정인석;이형진
    • 한국연소학회지
    • /
    • 제23권1호
    • /
    • pp.36-43
    • /
    • 2018
  • Numerical simulations and experiments are performed to investigate the flame development inside tubes with different diameters at the same burst pressure. It is shown that generation of a stable flame play a role in self-ignition. In the smaller tube, multi-dimensional shock interaction is occurred near the diaphragm. After flame of a cross-section is developed, stable flame remains for a moment then it grows having enough energy to overcome the sudden release at the exit. Whereas shock interaction generate complex flow further downstream for a larger tube, it results in stretched flame. This dispersed flame has lower average temperature which makes it easily extinguished.