• Title/Summary/Keyword: segmental retaining wall

Search Result 67, Processing Time 0.025 seconds

The Evaluation on Behavior of Segmental Grid Retaining Wall by Model Test (압밀주입에 의한 지반개량 특성고찰)

  • Kim, Sang-Su;Bae, Woo-Seok;Lee, Jong-Kyu
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.162-171
    • /
    • 2006
  • Segmental Grid Retaining Wall is one of the segmental grid retaining walls using headers and stretchers to establish the framework of the wall In this method, grids formed by the intersection of headers and stretchers are generally filled with the gravel to maintain the weight of the wall Therefore, the construction can be carried out with higher speed and much economically when compared with the concrete retaining wall Furthermore, it has high drain capacity, and environmentally friendly aspects also have been pointed out because the possibility of the planting at the front of the wall However, in the segmental grid retaining wall method, the relative movement between the individual headers and stretchers was generally recognized, and stress redistribution in the gravel filling was also observed when subjected to the external loading and self-weight of filling Therefore, it has been thought that the distribution of the earth pressure in the segmental grid retaining wall system differ from that of the concrete retaining wall In this study, the surcharge tests using the scaled model segmental grid retaining wall was carried out to observe the distribution of the earth pressure in the segmental grid retaining wall The earth pressure was measured in the six specified height of wall, and the distribution of the pressure was analyzed. Furthermore, the earth pressure by computation or by the test using the concrete retaining wall was also considered to make comparison

  • PDF

A Basic Study for Design and Analysis of the Green Wall System (Green Wall 시스템의 설계 및 해석을 위한 기초연구)

  • Park, Si-Sam;Kim, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

Instrumentation of A Two-Level of Soil-Reinforced Segmental Retaining Wall (계단식 지오그리드 보강토 옹벽의 계측)

  • 유충식;정혁상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.697-704
    • /
    • 2002
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF

The Behavior Characteristics of Segmental Crib Retaining Wall by Model Test (모형실험에 의한 조립식 격자 옹벽의 거동 특성)

  • 김상수;신방웅;김용언;이재영;변동건
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.449-456
    • /
    • 1999
  • The concrete wall is the most useful of retaining structure which can obtain the engineering stability, but has problems that is not friendly with nature environment in a fine view, such as poor rear drainage, and shrinkage crack by temperature difference, etc. Because of this problems, the research for a segmental crib retaining wall has been performed. A segmental crib retaining wall is quickly and easily erected because is possible to be erected as the individual members, and is not sensitive to differential settlement and earthquakes. Also, it shows effective drainage and has a friendly advantage with nature environment because of being able to be planted with vines and shrubs in retaining walls The design of crib retaining walls has traditionally been based on classical soil mechanics theories. These theories, originally derived by Rankine(1857) and Coulomb(1776), assume that the wall acts as a rigid body. This assumption results in failure being predicted by either monolithic overturning or base sliding mechanisms. However, the wall consists of individual members which have been created a three dimensional grid. This grid confines an fill mass which becomes part of the wall. The filled wall resists the earth pressure with the same mechanism of classical gravity walls. Because of the flexibility of the individual segment, it allows relative movement between the individual members within the wall. The three dimensional flexible grid leads to stress redistribution when the wall is subjected to external or fill loads. Due to the flexibility and the stress redistribution, the failure of segmental crib wall consists of not only overturing and base sliding but the local deformation and the failure between the segmental members. It has been researched in the field that due to this flexibility and load redistribution, serviceability failure of segmental crib walls is unlikely to be due to overturning or base sliding. Therefore, in this study, the relative displacement appearance of retaining wall due to variation of inclination is measured to examine this behavior characteristics. Also, the behavior characteristics of retaining walls by surcharge load, and location of acting point of retaining wall rear, and the displacement characteristics and deflections are estimated about the existence and nonexistence of Rear Stretcher performing an role in transmitting earth pressure of Header and Stretcher organizing retaining walls. This research focuses on the characteristics due to the behavior of retaining walls. This research focuses on the characteristics due to the behavior of retaining walls.

  • PDF

Assessment of Connection Strength and Frictional Characteristic for The Segmental Retaining Wall Unit (보강토 옹벽 전면블록의 연결강도 및 마찰특성 평가)

  • Kim, Jin-Man;Cho, Sam-Deok;Oh, Se-Yong;Lee, Dae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1562-1571
    • /
    • 2005
  • The use of geogrid for SRW systems and bridge abutment has increased rapidly over the past 10 years in Korea. The concept of segmental retaining walls and reinforced soil is very old and for example The Ziggurats of Babylonia(i.e. Tower of Babel) were built some 2,500 to 3,000 years ago using soil reinforcing methods very similar to those described in current design. Modern SRW(Semental Retaining Wall) units were introduced in 1960's as concrete crib retaining wall systems. In this paper, the friction properties between segmental concrete units and geogrid are investigated by performing various tests.

  • PDF

Lessons Learned from Failure of Geogrid-Reinforced Segmental Retaining Wall (블록식 보강토 옹벽의 하자발생 사례 분석)

  • 신은철;오영인;김종인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.329-336
    • /
    • 2001
  • The numbers of geogrid-reinforced walls are widely used in Korea. This papers present the results of two failure case histories of geogrid-reinforced segmental retaining walls. The geological background of the construction sites, detailed construction sequences, and the amount of rainfall were examined. The failure of these reinforced walls are caused by the improper drainage system and foundation treatment, too sharpened curvature of corner work, and too high height of wall.

  • PDF

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.

Behavior of Reinforced Earth Retaining Wall for Connector System Driving the Settlement of Reinforcement (보강재 침하를 허용하는 연결시스템을 적용한 보강토옹벽의 거동)

  • Jong-Keun Oh;Jeong, Jong-Gi;Lee, Song
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.156-161
    • /
    • 2006
  • Recently, construction of soil-reinforced segmental retaining walls which used geosynthetics are being increased day by day due to its construction efficiency, economic efficiency, and its aesthetic view. The conventional reinforced earth retaining wall has the connector system to fix the reinforcement and block However, this system may cause the crack of block and the rupture of reinforcement due to the stress concentration near the face of reinforced earth retaining wall In this study, the new connector system, which is able to allow the settlement of reinforcement, was applied to analyze the effect of connector system of reinforced earth retaining wall The connection strength tests and centrifugal tests for both the conventional reinforced earth retaining wall and the settlement reinforced earth retaining wall were performed to compare the results

  • PDF

Analysis of the Segmental Reinforced Retaining Wall Behavior by Field Monitoring (현장계측을 통한 블럭식 보강토 옹벽의 거동분석)

  • Shin, Eun Chul;Lee, Chang-Seup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 2004
  • Geogrid reinforced soil structures with segmental block facing have been increased since 1990's, because of the convenience of installation and the flexible appearance. In this paper, the behavior of the segmental reinforced retaining wall was analysed with the results of field monitoring. The height and length of reinforced wall are 12m and 25m, respectively. The field measurement equipments are horizontal and vertical earth pressure cells, settlement plate, strain gauge, inclinometer, and displacement pin. Based on the field monitoring, the horizontal earth pressure was approximately 0.3times higher than that of the theoretical method and the maximum tensile strength of reinforcement was 26.2kN/m. The displacement of facing wall was 23mm at the point of 7.1m height of the wall and toward the wall facing. The results of the study indicate that the segmental reinforced retaining wall is in a stable condition because of good compaction & reinforcement effects, and long period of construction time. Finally, the computer program of SRWall is very useful tool to design the segmental reinforced retaining wall.

  • PDF