• Title/Summary/Keyword: secretion proteins

Search Result 263, Processing Time 0.024 seconds

Characterization of Type VI Secretion System in Xanthomonas oryzae pv. oryzae and Its Role in Virulence to Rice

  • Choi, Yeounju;Kim, Namgyu;Mannaa, Mohamed;Kim, Hongsup;Park, Jungwook;Jung, Hyejung;Han, Gil;Lee, Hyun-Hee;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.289-296
    • /
    • 2020
  • Type VI secretion system (T6SS) is a contact-dependent secretion system, employed by most gram-negative bacteria for translocating effector proteins to target cells. The present study was conducted to investigate T6SS in Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice, and to unveil its functions. Two T6SS clusters were found in the genome of Xoo PXO99A. The deletion mutants, Δhcp1, Δhcp2, and Δhcp12, targeting the hcp gene in each cluster, and a double-deletion mutant targeting both genes were constructed and tested for growth rate, pathogenicity to rice, and inter-bacterial competition ability. The results indicated that hcp in T6SS-2, but not T6SS-1, was involved in bacterial virulence to rice plants. However, neither T6SS-1 nor T6SS-2 had any effect on the ability to compete with Escherichia coli or other bacterial cells. In conclusion, T6SS gene clusters in Xoo have been characterized, and its role in virulence to rice was confirmed.

Natural and synthetic pathogen associated molecular patterns modulate galectin expression in cow blood

  • Asiamah, Emmanuel Kwaku;Ekwemalor, Kingsley;Adjei-Fremah, Sarah;Osei, Bertha;Newman, Robert;Worku, Mulumebet
    • Journal of Animal Science and Technology
    • /
    • v.61 no.5
    • /
    • pp.245-253
    • /
    • 2019
  • Pathogen-associated Molecular Patterns (PAMPs) are highly conserved structural motifs that are recognized by Pathogen Recognition receptors (PRRs) to initiate immune responses. Infection by these pathogens and the immune response to PAMPS such as lipopolysaccharide (LPS), Peptidoglycan (PGN), bacterial oligodeoxynucleotides [CpG oligodeoxynucleotides 2006 (CpG ODN2006) and CpG oligodeoxynucleotides 2216 (CpG ODN2216)], and viral RNA Polyinosinic-Polycytidylic Acid (Poly I:C), are associated with infectious and metabolic diseases in animals impacting health and production. It is established that PAMPs mediate the production of cytokines by binding to PRRs such as Toll-like receptors (TLR) on immune cells. Galectins (Gal) are carbohydrate-binding proteins that when expressed play essential roles in the resolution of infectious and metabolic diseases. Thus it is important to determine if the expression of galectin gene (LGALS) and Gal secretion in blood are affected by exposure to LPS and PGN, PolyI:C and bacterial CpG ODNs. LPS increased transcription of LGALS4 and 12 (2.5 and 2.02 folds respectively) and decreased secretion of Gal 4 (p < 0.05). PGN increased transcription of LGALS-1, -2, -3, -4, -7, and -12 (3.0, 2.3, 2.0, 4.1, 3.3, and 2.4 folds respectively) and secretion of Gal-8 and Gal-9 (p < 0.05). Poly I:C tended to increase the transcription of LGALS1, LGALS4, and LGALS8 (1.78, 1.88, and 1.73 folds respectively). Secretion of Gal-1, -3, -8 and nine were significantly increased in treated samples compared to control (p < 0.05). CpG ODN2006 did not cause any significant fold changes in LGALS transcription (FC < 2) but increased secretion of Gal-1, and-3 (p < 0.05) in plasma compared to control. Gal-4 was however reduced in plasma (p < 0.05). CpG ODN2216 increased transcription of LGALS1 and LGALS3 (3.8 and 1.6 folds respectively), but reduced LGALS2, LGALS4, LGALS7, and LGALS12 (-1.9, -2.0, -2.0 and; -2.7 folds respectively). Secretion of Gal-2 and -3 in plasma was increased compared to control (p < 0.05). Gal-4 secretion was reduced in plasma (p < 0.05). The results demonstrate that PAMPs differentially modulate galectin transcription and translation of galectins in cow blood.

Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes

  • Kim, Yong-Mo;Lee, Sang Mee;Chung, Hye-Shin
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.606-610
    • /
    • 2013
  • Glucagon like peptide-1 (GLP-1) regulates glucose mediated-insulin secretion, nutrient accumulation, and ${\beta}$-cell growth. Despite the potential therapeutic usage for type 2 diabetes (T2D), GLP-1 has a short half-life in vivo ($t_{1/2}$ <2 min). In an attempt to prolong half-life, GLP-1 fusion proteins were genetically engineered: GLP-1 human serum albumin fusion (GLP-1/HSA), AGLP-1/HSA which has an additional alanine at the N-terminus of GLP-1, and AGLP-1-L/HSA, in which a peptide linker is inserted between AGLP-1 and HSA. Recombinant fusion proteins secreted from the Chinese Hamster Ovary-K1 (CHO-K1) cell line were purified with high purity (>96%). AGLP-1 fusion protein was resistant against the dipeptidyl peptidase-IV (DPP-IV). The fusion proteins activated cAMP-mediated signaling in rat insulinoma INS-1 cells. Furthermore, a C57BL/6N mice pharmacodynamics study exhibited that AGLP-1-L/HSA effectively reduced blood glucose level compared to AGLP-1/HSA.

Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6

  • Kim, Chul Hong;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.220-227
    • /
    • 2014
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.

Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions

  • Lee, Jongchan;Choi, Junhyeok;Lee, Jeongwook;Cho, Yongmin;Kang, In-Jeong;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.410-416
    • /
    • 2022
  • Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

Molecular determinants of the host specificity by Xanthomonas spp.

  • Heu, Sunggi;Choi, Min-Seon;Park, Hyoung-Joon;Lee, Seung-Don;Ra, Dong-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.65-67
    • /
    • 2004
  • During initial interactions of bacteria with their host plants, most plants recognize the bacterial infections and repel the pathogen by plant defense mechanism. The most active plant defense mechanism is the hypersensitive response (HR) which is the localized induced cell death in the plant at the site of infection by a pathogen. A primary locus induced in gram-negative phytopathogenic bacteria during this initial interaction is the Hrp locus. The Hrp locus is composed of a cluster of genes that encodes the bacteral Type 111 machinery that is involved in the secretion and translocation of effector proteins to the plant cell. DNA sequence analysis of hrp gene in phytopathogenic bacteria has revealed a Hrp pathogenicity is]and (PAI) with a tripartite mosaic structure. For many gram-negative pathogenic bacteria, colonization of the host's tissue depends on the type III protein secretion system (TTSS) which secrets and translocates effector proteins into the host cell. Effectors can be divided into several groups including broad host range effectors, host specific effectors, disease specific effectors, and effectors inhibit host defenses. The role of effectors carrying LRR domain in plant resistance is very elusive since most known plant resistance gene carry LRR domain. Host specific effectors such as several avr gene products are involved in the determination of the host specificity. Almost all the phytopathogenic Xanthomonas spp. carry avrBs1, avrBs2, and avrBs3 homologs. Some strains of X. oryzae pv. oryzae carry more than 10 copies of avrBs3 homologs. However, the functions of all those avr genes in host specificity are not characterized well.;

  • PDF

Mechanism of Differential Ag-specific Immune Induction by Different Tumor Cell Lysate Pulsed DC (종양 세포 용해액에 따른 수지상세포 유도 항원 특이 면역반응 차이의 기전 연구)

  • Lee, Kang-Eun;Shon, Hye-Jin;Kim, Myung-Joo;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.6 no.3
    • /
    • pp.145-153
    • /
    • 2006
  • Background: Tumor cell lysate has been considered as a preferential antigen source for the therapeutic dendritic cell pulsing. Our experiences with in vivo study with animal tumor model indicate the tumor cell lysate dependent differential effect of DC therapy. Our previous data show that MC38 lysate pulsed-DC induced stronger ag-specific immunity than CT26 lysate pulsed-DC in vitro. In this study we tried to reveal the mechanism for differential induction of ag-specific immunity of different colon cancer cell lysate pulsed-DCs. Methods: MC38 and CT26 cell lines were prepared as lysate by freezing-thawing procedure. Tumor cell antigenicity was confirmed by detecting the surface expression of MHC I/II & B7.1/2 molecules. IL-10, IL-12 and TGF-beta in the tumor cell lysate were detected by ELISA and the presence of heat shock proteins were analysed by western blotting. Results: The secretion of IL-10, a immune-inhibitory cytokine was about 470% higher in CT26 lysate than in MC38. Hsp 70 was detected only in the MC38 lysate but not in the CT26. On the other hand, Hsp 60 and 90 expression were not different in two colon cancer cell lysates. Conclusion: In two different colon cancer cell lysate, immune inhibitory IL-10 (higher in CT26) and Hsp70 (MC38 superiority) were differentially expressed. These data indicate that higher agspecific immunity induction by MC38 lysate pulsed-DC may due to the expression of hsp70 and lower secretion of IL-10, a immune-inhibitory cytokine than CT26 lysate. The significance of other cytokine and the surface marker expression will be discussed.

Genome sequence of Bifidobacterium dentium strain ATCC 15424 originally isolated from pleural fluid of an empyema patient (농흉 환자의 흉막액에서 분리된 Bifidobacterium dentium strain ATCC 15424의 유전체 염기서열 해독)

  • Moon, Ji-Hoi;Kim, Suegene;Yang, Seok Bin;Jang, Eun-Young;Shin, Seung-Yun;Lee, Jin-Yong;Lee, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.280-282
    • /
    • 2019
  • We present here a draft genome sequence of Bifidobacterium dentium strain ATCC 15424, originally isolated from pleural fluid of an empyema patient. The genome is 2,625,535 bp in length and has a GC content of 58.5%. The genome includes 2,154 protein-coding genes, 4 rRNAs, and 55 tRNAs. Unlike other B. dentium strains isolated from human dental caries, ATCC 15424 carries 247 strain-specific genes, including prophage remnants and type III/IV secretion system proteins, N-acetylmuramoyl-L-alanine amidase, and PRTRC system protein E. The sequence information will contribute to understanding of the natural variation of B. dentium as well as the genome diversity within the bacterial species.

Freeze Tolerance Enhanced by Antifreeze Protein in Plant

  • Hwang, Cheol-Ho;Park, Hyun-Woo;Min, Sung-Ran;Liu, Jang-Ryol
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.339-343
    • /
    • 2000
  • When plants are exposed to subfreezing temperatures ice crystals are forming within extracelluar space in leaves. The growth of ice crystal is closely related to the degree of freezing injury. It was shown that an antifreeze protein binds to an ice nucleator through hydrogen bonds to prevent growth of ice crystal and also reduces freezing damage. The antifreeze proteins in plants are similar to PR proteins but only the PR proteins induced upon cold acclimation were shown to have dual functions in antifreezing as well as antifungal activities. Three of the genes encoded for CLP, GLP, and TLP were isolated from barley and Kentucky bluegrass based on amino acid sequence revealed after purification and low temperature-inducibility as shown in analysis of the protein. The deduced amino acid of the genes cloned showed a signal for secretion into extracellular space where the antifreezing activity sup-posed to work. The western analysis using the antisera raised against the antifreeze proteins showed a positive correlation between the amount of the protein and the level of freeze tolerance among different cultivars of barely. Besides it was revealed that TLP is responsible for a freeze tolerance induced by a treatment of trinexapac ethyl in Kentucky bluegrass. Analysis of an overwintering wild rice, Oryza rufipogon also showed that an acquisition of freeze tolerance relied on accumulation of the protein similar to CLP. The more direct evidence for the role of CLP in freeze tolerance was made with the analysis of the transgenic tobacco showing extracellular accumulation of CLP and enhanced freeze tolerance measured by amount of ion leakage and rate of photosynthetic electron transport upon freezing. These antifreeze proteins genes will be good candidates for transformation into crops such as lettuce and strawberry to develop into the new crops capable of freeze-storage and such as rose and grape to enhance a freeze tolerance for a safe survival during winter.

  • PDF

Endoplasmic Reticulum Signaling for Recombinant-protein Production (재조합 단백질 생산을 위한 소포체 신호전달)

  • Goo, Tae-Won;Yun, Eun-Young;Kang, Seok-Woo;Kwon, Ki-Sang;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.847-858
    • /
    • 2007
  • The endoplasmic reticulum (ER) is an important intracellular organelle for folding and maturation of newly synthesized transmembrane and secretory proteins. The ER provides stringent quality control systems to ensure that only correctly folded proteins exit the ER and unfolded or misfolded proteins are retained and ultimately degraded. The ER has evolved stress response both signaling pathways the unfolded protein response (UPR) to cope with the accmulation of unfolded or misfolded proteins and ER overload response (EOR). Accumulating evidence suggests that, in addition to responsibility for protein processing, ER is also an important signaling compartment and a sensor of cellular stress. In this respect, production of bio-functional recombinant-proteins requires efficient functioning of the ER secretory pathway in host cells. This review briefly summarizes our understanding of the ER signaling developed in the recent years to help of the secretion capacities of recombinant cells.