DOI QR코드

DOI QR Code

Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions

  • Lee, Jongchan (Department of Plant Science and Technology, Chung-Ang University) ;
  • Choi, Junhyeok (Department of Plant Science and Technology, Chung-Ang University) ;
  • Lee, Jeongwook (Department of Plant Science and Technology, Chung-Ang University) ;
  • Cho, Yongmin (Department of Plant Science and Technology, Chung-Ang University) ;
  • Kang, In-Jeong (Division of Crop Cultivation and Environment Research, National Institute of Crop Science) ;
  • Han, Sang-Wook (Department of Plant Science and Technology, Chung-Ang University)
  • Received : 2022.05.20
  • Accepted : 2022.06.21
  • Published : 2022.08.01

Abstract

Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

Keywords

Acknowledgement

This work was carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development (Grant No. PJ014934), Rural Development Administration, Republic of Korea. This research was also supported by the Chung-Ang University Graduate Research Scholarship in 2022 (awarded to Junhyeok Choi).

References

  1. Achard, M. E. S., Tree, J. J., Holden, J. A., Simpfendorfer, K. R., Wijburg, O. L. C., Strugnell, R. A., Schembri, M. A., Sweet, M. J., Jennings, M. P. and McEwan, A. G. 2010. The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect. Immun. 78:2312-2319. https://doi.org/10.1128/IAI.01208-09
  2. Akhlaghi, M., Tarighi, S. and Taheri, P. 2020. Effects of plant essential oils on growth and virulence factors of Erwinia amylovora. J. Plant Pathol. 102:409-419. https://doi.org/10.1007/s42161-019-00446-9
  3. Ancona, V., Chatnaparat, T. and Zhao, Y. 2015. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol. Genet. Genomics 290:1265-1276. https://doi.org/10.1007/s00438-015-0988-8
  4. Bellemann, P., Bereswill, S., Berger, S. and Geider, K. 1994. Visualization of capsule formation by Erwinia amylovora and assays to determine amylovoran synthesis. Int. J. Biol. Macromol. 16:290-296. https://doi.org/10.1016/0141-8130(94)90058-2
  5. Brannon, J. R., Burk, D. L., Leclerc, J.-M., Thomassin, J.-L., Portt, A., Berghuis, A. M., Gruenheid, S. and Le Moual, H. 2015. Inhibition of outer membrane proteases of the omptin family by aprotinin. Infect. Immun. 83:2300-2311. https://doi.org/10.1128/IAI.00136-15
  6. Choi, H., Fermin, D. and Nesvizhskii, A. I. 2008. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell. Proteomics 7:2373-2385. https://doi.org/10.1074/mcp.M800203-MCP200
  7. Deng, M. and Misra, R. 1996. Examination of AsmA and its effect on the assembly of Escherichia coli outer membrane proteins. Mol. Microbiol. 21:605-612. https://doi.org/10.1111/j.1365-2958.1996.tb02568.x
  8. Elias, J. E. and Gygi, S. P. 2007. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4:207-214. https://doi.org/10.1038/nmeth1019
  9. Gaudriault, S., Brisset, M.-N. and Barny, M.-A. 1998. HrpW of Erwinia amylovora, a new Hrp-secreted protein. FEBS Lett. 428:224-228. https://doi.org/10.1016/S0014-5793(98)00534-1
  10. Hejair, H. M. A., Zhu, Y., Ma, J., Zhang, Y., Pan, Z., Zhang, W. and Yao, H. 2017. Functional role of ompF and ompC porins in pathogenesis of avian pathogenic Escherichia coli. Microb. Pathog. 107:29-37. https://doi.org/10.1016/j.micpath.2017.02.033
  11. Iwadate, Y., Funabasama, N. and Kato, J.-I. 2017. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli. FEMS Microbiol. Lett. 364:fnx193.
  12. Jin, Q., Hu, W., Brown, I., McGhee, G., Hart, P., Jones, A. L. and He, S. Y. 2001. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40:1129-1139. https://doi.org/10.1046/j.1365-2958.2001.02455.x
  13. Kachadourian, R., Dellagi, A., Laurent, J., Bricard, L., Kunesch, G. and Expert, D. 1996. Desferrioxamine-dependent iron transport in Erwinia amylovora CFBP1430: cloning of the gene encoding the ferrioxamine receptor FoxR. Biometals 9:143-150. https://doi.org/10.1007/BF00144619
  14. Kaihami, G. H., de Almeida, J. R. F., dos Santos, S. S., Netto, L. E. S., de Almeida, S. R. and Baldini, R. L. 2014. Involvement of a 1-Cys peroxiredoxin in bacterial virulence. PLoS Pathog. 10:e1004442. https://doi.org/10.1371/journal.ppat.1004442
  15. Kang, I.-J., Park, D. H., Lee, Y.-K., Han, S.-W., Kwak, Y.-S. and Oh, C.-S. 2021. Complete genome sequence of Erwinia amylovora strain TS3128, a Korean strain isolated in an asian pear orchard in 2015. Microbiol. Resour. Announc. 10:e00694-21.
  16. Kim, M., Lee, J., Heo, L., Lee, S. J. and Han, S.-W. 2021. Proteomic and phenotypic analyses of a putative glycerol3-phosphate dehydrogenase required for virulence in Acidovorax citrulli. Plant Pathol. J. 37:36-46. https://doi.org/10.5423/PPJ.OA.12.2020.0221
  17. Kotrba, P., Inui, M. and Yukawa, H. 2001. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng. 92:502-517. https://doi.org/10.1016/S1389-1723(01)80308-X
  18. Lee, J., Heo, L. and Han, S.-W. 2021. Comparative proteomic analysis for a putative pyridoxal phosphate-dependent aminotransferase required for virulence in Acidovorax citrulli. Plant. Pathol. J. 37:673-680. https://doi.org/10.5423/PPJ.NT.09.2021.0139
  19. Lee, J. H. and Zhao, Y. 2017. ClpXP-dependent RpoS degradation enables full activation of type III secretion system, amylovoran production, and motility in Erwinia amylovora. Phytopathology 107:1346-1352. https://doi.org/10.1094/PHYTO-06-17-0198-R
  20. Li, J. and Wang, N. 2012. The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri. BMC Microbiol. 12:31. https://doi.org/10.1186/1471-2180-12-31
  21. Liu, W.-T., Karavolos, M. H., Bulmer, D. M., Allaoui, A., Hormaeche, R. D. C. E., Lee, J. J. and Khan, C. M. A. 2007. Role of the universal stress protein UspA of Salmonella in growth arrest, stress and virulence. Microb. Pathog. 42:2-10. https://doi.org/10.1016/j.micpath.2006.09.002
  22. Malnoy, M., Martens, S., Norelli, J. L., Barny, M.-A., Sundin, G. W., Smits, T. H. M. and Duffy, B. 2012. Fire blight: applied genomic insights of the pathogen and host. Annu. Rev. Phytopathol. 50:475-494. https://doi.org/10.1146/annurev-phyto-081211-172931
  23. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  24. Myung, I.-S., Lee, J.-Y., Yun, M.-J., Lee, Y.-H., Lee, Y.-K., Park, D.-H. and Oh, C.-S. 2016. Fire blight of apple, caused by Erwinia amylovora, a new disease in Korea. Plant Dis. 100:1774.
  25. Pique , N., Minana-Galbis, D., Merino, S. and Tomas, J. M. 2015. Virulence factors of Erwinia amylovora: a review. Int. J. Mol. Sci. 16:12836-12854. https://doi.org/10.3390/ijms160612836
  26. Salomone-Stagni, M., Bartho, J. D., Kalita, E., Rejzek, M., Field, R. A., Bellini, D., Walsh, M. A. and Benini, S. 2018. Structural and functional analysis of Erwinia amylovora SrlD: the first crystal structure of a sorbitol-6-phosphate 2-dehydrogenase. J. Struct. Biol. 203:109-119. https://doi.org/10.1016/j.jsb.2018.03.010
  27. Soscia, C., Hachani, A., Bernadac, A., Filloux, A. and Bleves, S. 2007. Cross talk between type III secretion and flagellar assembly systems in Pseudomonas aeruginosa. J. Bacteriol. 189:3124-3132. https://doi.org/10.1128/JB.01677-06
  28. Spero, M. A., Aylward, F. O., Currie, C. R. and Donohue, T. J. 2015. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH:quinone oxidoreductase (complex I) across bacteria. mBio 6:e00389-15.
  29. Tatusov, R. L., Galperin, M. Y., Natale, D. A. and Koonin, E. V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28:33-36. https://doi.org/10.1093/nar/28.1.33
  30. Vila-Farres, X., Parra-Millan, R., Sanchez-Encinales, V., Varese, M., Ayerbe-Algaba, R., Bayo, N., Guardiola, S., PachonIbanez, M. E., Kotev, M., Garcia, J., Teixido, M., Vila, J., Pachon, J., Giralt, E. and Smani, Y. 2017. Combating virulence of Gram-negative bacilli by OmpA inhibition. Sci. Rep. 7:14683. https://doi.org/10.1038/s41598-017-14972-y
  31. Wang, D., Korban, S. S. and Zhao, Y. 2009. The Rcs phosphor-relay system is essential for pathogenicity in Erwinia amylovora. Mol. Plant Pathol. 10:277-290. https://doi.org/10.1111/j.1364-3703.2008.00531.x
  32. Wei, Z. M., Sneath, B. J. and Beer, S. V. 1992. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J. Bacteriol. 174:1875-1882. https://doi.org/10.1128/jb.174.6.1875-1882.1992
  33. Xiao, M., Lai, Y., Sun, J., Chen, G. and Yan, A. 2016. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli. Front. Microbiol. 7:799. https://doi.org/10.3389/fmicb.2016.00799
  34. Zeng, Y. and Charkowski, A. O. 2021. The role of ATP-binding cassette transporters in bacterial phytopathogenesis. Phytopathology 111:600-610. https://doi.org/10.1094/PHYTO-06-20-0212-RVW