• Title/Summary/Keyword: secondary metabolism

Search Result 205, Processing Time 0.028 seconds

Supplementation of a Fermented Soybean Extract Reduces Body Mass and Prevents Obesity in High Fat Diet-Induced C57BL/6J Obese Mice

  • Lee, Jae Yeon;Aravinthan, Adithan;Park, Young Shik;Hwang, Kyo Yeol;Seong, Su-Il;Hwang, Kwontack
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • Obesity is a growing health problem that many countries face, mostly due to the consumption of a Westernized diet. In this present study we observed the effects of a soybean extract fermented by Bacillus subtilis MORI (BTD-1) containing 1-deoxynojirimycin against high fat diet-induced obesity. The results obtained from this study indicated that BTD-1 reduced body weight, regulated hepatic lipid content and adipose tissue, and also affected liver antioxidant enzymes and glucose metabolism. These results suggest that administration of BTD-1 affects obesity by inhibiting hyperglycemia and free radical-mediated stress; it also reduces lipid accumulation. Therefore, BTD-1 may be potentially useful for the prevention of obesity and its related secondary complications.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Analysis of Aluminum Stress-induced Differentially Expressed Proteins in Alfalfa Roots Using Proteomic Approach

  • Kim, Dong-Hyun;Lee, Joon-Woo;Min, Chang-Woo;Rahman, Md. Atikur;Kim, Yong-Goo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.137-145
    • /
    • 2022
  • Aluminum (Al) is one of the major factors adversely affects crop growth and productivity in acidic soils. In this study, the effect of Al on plants in soil was investigated by comparing the protein expression profiles of alfalfa roots exposed to Al stress treatment. Two-week-old alfalfa seedlings were exposed to Al stress treatment at pH 4.0. Total protein was extracted from alfalfa root tissue and analyzed by two-dimensional gel electrophoresis combined with MALDI-TOF/TOF mass spectrometry. A total of 45 proteins differentially expressed in Al stress-treated alfalfa root tissues were identified, of which 28 were up-regulated and 17 were down-regulated. Of the differentially expressed proteins, 7 representative proteins were further confirmed for transcript accumulation by RT-PCR analysis. The identified proteins were involved in several functional categories including disease/defense (24%), energy (22%), protein destination (9%), metabolism (7%), transcription (5%), secondary metabolism (4%), and ambiguous classification (29%). The identification of key candidate genes induced by Al in alfalfa roots will be useful to elucidate the molecular mechanisms of Al stress tolerance in alfalfa plants.

Induction of Fungal Secondary Metabolites by Co-Culture with Actinomycete Producing HDAC Inhibitor Trichostatins

  • Gwi Ja Hwang;Jongtae Roh;Sangkeun Son;Byeongsan Lee;Jun-Pil Jang;Jae-Seoun Hur;Young-Soo Hong;Jong Seog Ahn;Sung-Kyun Ko;Jae-Hyuk Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1437-1447
    • /
    • 2023
  • A recently bioinformatic analysis of genomic sequences of fungi indicated that fungi are able to produce more secondary metabolites than expected. Despite their potency, many biosynthetic pathways are silent in the absence of specific culture conditions or chemical cues. To access cryptic metabolism, 108 fungal strains isolated from various sites were cultured with or without Streptomyces sp. 13F051 which mainly produces trichostatin analogues, followed by comparison of metabolic profiles using LC-MS. Among the 108 fungal strains, 14 produced secondary metabolites that were not recognized or were scarcely produced in mono-cultivation. Of these two fungal strains, Myrmecridium schulzeri 15F098 and Scleroconidioma sphagnicola 15S058 produced four new compounds (1-4) along with a known compound (5), demonstrating that all four compounds were produced by physical interaction with Streptomyces sp. 13F051. Bioactivity evaluation indicated that compounds 3-5 impede migration of MDA-MB-231 breast cancer cells.

Hypericum Perforatum Decreased Hippocampus TNF-${\alpha}$ and Corticosterone Levels with No Effect on Kynurenine/Tryptophan Ratio in Bilateral Ovariectomized Rats

  • El-Bakly, Wesam M.;Hasanin, Amany H.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.233-239
    • /
    • 2014
  • The present study was designed to investigate the effect Hypericum Perforatum (HP), on behavioral changes, corticosterone, TNF-${\alpha}$ levels and tryptophan metabolism and disposition in bilateral ovariectomized rats compared to $17{\alpha}$-ethinylestradiol. Behavioral analysis by measuring immobility time in forced swimming test and open field test, serum and hippocampal corticosterone and TNF-${\alpha}$ along with hippocampal kynurenine/tryptophan ratio were determined in mature ovariectomized rats treated orally either by HP at three different doses 125, 250, and 500 mg/kg/day or by $17{\alpha}$-ethinylestradiol $30{\mu}g/kg/day$ for 30 days. Ovariectomized rats showed significant increase in immobility time in the forced swimming test. Along with elevation in serum and hippocampal TNF-${\alpha}$ and corticosterone levels associated with significant increase in hippocampal kynurenine/tryptophan ratio. Immobility time in the forced swimming test was decreased in rats treated by different doses of HP in a dose dependent manner and $17{\alpha}$-ethinylestradiol with no concomitant changes in the open field test. Only Rats treated with HP exhibited significant decrease in the elevated serum and hippocampal TNF-${\alpha}$ and corticosterone, which couldn't explain the associated insignificant effect on hippocampaus kynurenine/tryptophan ratio in comparison to ovariectomized untreated rats. It is concluded that increased tryptophan metabolism toward kynurenine secondary to elevated corticosterone and TNF-${\alpha}$ might be one of the pathohphysiological mechanisms that could explain depression like state observed in this rat model. Further, the observed attenuating effect of HP on TNF-${\alpha}$ and corticosterone could contribute in its antidepressant effect in this animal model by other ways than their effects on tryptophan-kynurenine metabolism pathway.

Effect of Dietary Inclusion of Lactobacillus acidophilus ATCC 43121 on Cholesterol Metabolism in Rats

  • Park, Yoo-Heon;Kim, Jong-Gun;Shin, Yong-Won;Kim, Sae-Hun;Whang, Kwang-Youn
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.655-662
    • /
    • 2007
  • This study examined the effects of Lactobacillus acidophilus ATCC 43121 (LAB) on cholesterol metabolism in hypercholesterolemia-induced rats. Four treatment groups of rats (n=9) were fed experimental diets: normal diet, normal $diet+LAB(2{\times}10^6\;CFU/day)$, hypercholesterol diet (0.5% cholesterol, w/w), and hypercholesterol diet+LAB. Body weight, feed intake, and feed efficiency did not differ among the four groups. Supplementation with LAB reduced total serum cholesterol (25%) and VLDL+IDL+LDL cholesterol (42%) in hypercholesterol diet groups, although hepatic tissue cholesterol and lipid contents were not changed. In the normal diet group, cholesterol synthesis (HMG-CoA reductase expression), absorption (LDL receptor expression), and excretion via bile acids (cholesterol $7{\alpha}-hydroxylase$ expression) were increased by supplementation with LAB, and increased cholesterol absorption and decreased excretion were found in the hypercholesterol diet group. Total fecal acid sterols excretion was increased by supplementation with LAB. With proportional changes in both normal and hypercholesterol diet groups, primary bile acids (cholic and chenodeoxycholic acids) were reduced, and secondary bile acids (deoxycholic and lithocholic acids) were increased. Fecal neutral sterol excretion was not changed by LAB. In this experiment, the increase in insoluble bile acid (lithocholic acid) reduced blood cholesterol level in rats fed hypercholesterol diets supplemented with LAB. Thus, in the rat, L. acidophilus ATCC 43121 is more likely to affect deconjugation and dehydroxylation during cholesterol metabolism than the assimilation of cholesterol into cell membranes.

Metabolic Topography of Parkinsonism

  • Kim, Jae-Seung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.141-151
    • /
    • 2007
  • Parkinson's disease is one of the most frequent neurodegenerative diseases, which mainly affects the elderly. Parkinson's disease is often difficult to differentiate from atypical parkinson diorder such as progressive supranuclear palsy, multiple system atrophy, dementia with Lewy body, and corticobasal ganglionic degeneration, based on the clinical findings because of the similarity of phenotypes and lack of diagnostic markers. The accurate diagnosis of Parkinson's disease and atypical Parkinson disorders is not only important for deciding on treatment regimens and providing prognosis, but also it is critical for studies designed to investigate etiology and pathogenesis of parkinsonism and to develop new therapeutic strategies. Although degeneration of the nigrostriatal dopamine system results in marked loss of striatal dopamine content in most of the diseases causing parkinsonism, pathologic studies revealed different topographies of the neuronal cell loss in Parkisonism. Since the regional cerebral glucose metabolism is a marker of integrated local synaptic activity and as such is sensitive to both direct neuronal/synaptic damage and secondary functional disruption at synapses distant from the primary site of pathology, an assessment of the regional cerebral glucose metabolism with F-18 FDG PET is useful in the differential diagnosis of parkinsonism and evaluating the pathophysiology of parkisonism.

Positive Regulation of Pyoluteorin Biosynthesis in Pseudomonas sp. M18 by Quorum-Sensing Regulator VqsR

  • Huang, Xianqing;Zhang, Xuehong;Xu, Yuquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.828-836
    • /
    • 2008
  • The biocontrol rhizobacterium Pseudomonas sp. M18 can produce two kinds of antibiotics, namely pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), and is antagonistic against a number of soilborne phytopathogens. In this study, a luxR-type quorum-sensing regulatory gene, vqsR, was identified and characterized immediately downstream of the Plt gene cluster in strain MI8. A vqsR-inactivated mutant led to a significant decrease in the production of Plt and its biosynthetic gene expression. However, this was restored when introducing the vqsR gene by cloning into the plasmid pME6032 in trans. The vqsR mutation did not exert any obvious influence on the production of PCA and its biosynthetic gene expression and the production of N-acylhomoserine lactones (C4 and C8-HSLs) and their biosynthetic gene rhlI expression. Accordingly, these results introduce VqsR as a regulator of Plt production in Pseudomonas spp., and suggest that the regulatory mechanism of vqsR in strain M18 is distinct from that in P. aeruginosa. In addition, it was demonstrated that vqsR mutation did not have any obvious impact on the expression of Plt-specific ABC transporters and other secondary metabolic global regulators, including GacA, RpoS, and RsmA.

Distinctive Features of Hepatic Steatosis in Children: Is It Primary or Secondary to Inborn Errors of Metabolism?

  • Karhan, Asuman Nur;Hizarcioglu-Gulsen, Hayriye;Gumus, Ersin;Akcoren, Zuhal;Demir, Hulya;Saltik-Temizel, Inci Nur;Orhan, Diclehan;Ozen, Hasan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.6
    • /
    • pp.518-527
    • /
    • 2021
  • Purpose: The incidence of hepatic steatosis among children has been increasing; however, data distinguishing simple steatosis from a more complex disorder are lacking. Methods: This study identified the etiologies resulting in hepatic steatosis through a retrospective review of pediatric liver biopsies performed in the last 10 years. A total of 158 patients with hepatic steatosis proven by histopathological evaluation were enrolled in the study, and baseline demographic features, anthropometric measurements, physical examination findings, laboratory data, ultrasonographic findings, and liver histopathologies were noted. Results: The two most common diagnoses were inborn errors of metabolism (IEM) (52.5%) and nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) (29.7%). The three most common diseases in the IEM group were glycogen storage disorders, Wilson's disease, and mitochondrial disease. The rates of consanguineous marriage (75.6%; odds ratio [OR], 26.040) and positive family history (26.5%; OR, 8.115) were significantly higher (p=0.002, p<0.001, respectively) in the IEM group than those in the NAFLD/NASH group. Younger age (p=0.001), normal anthropometric measurements (p=0.03), increased aspartate aminotransferase levels (p<0.001), triglyceride levels (p=0.001), and cholestatic biochemical parameters with disrupted liver function tests, as well as severe liver destruction of hepatic architecture, cholestasis, fibrosis, and nodule formation, were also common in the IEM group. Conclusion: Parents with consanguinity and positive family history, together with clinical and biochemical findings, may provide a high index of suspicion for IEM to distinguish primary steatosis from the consequence of a more complex disorder.

An analysis of strand map for instructional objectives on the 7th curriculum in elementary and secondary biology (제 7차 교육과정의 초.중등 생물 수업 목표의 연계성 지도 분석)

  • Kim, Young-Shin;Kim, Hu-Ja;Sonn, Jong-Kyung;Jeng, Jae-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.6
    • /
    • pp.693-711
    • /
    • 2009
  • One of the most important objectives in science education is to develop students' science literacy. The purpose of this study is to analyze the relevance between biology instructional objectives in the 7th curriculum taught in elementary and secondary schools. For this study, 7 major parts in each grade were analyzed including cell, the form and function of plants, the form and function of animals, genetics, diversity, evolution, ecology, and environment. The strand map of instructional objectives is completed that represents the relation between the objectives. The summary of the results from this study is as follows. First, the concept about cells is not fully covered in lower grades including elementary schools. While the concept of energy metabolism is repeatedly covered, there is no concept of energy covered in learning the concept of energy metabolism in elementary schools. Second, the textbooks in elementary and middle schools have main concepts about the form and function of plants while those in high schools don't. The concept related to the part of the form and function of animals is repeatedly involved in the curriculum throughout the elementary, middle, and high schools. Third, the concepts such as genetics and evolution are involved in higher grades since these concepts are abstract ones. The part of genetics and evolution as well as diversity has no connection between grades in schools, so the development of "notion between" is necessary to relate these concepts with each other. Fourth, the 4 parts of diversity, ecology and environment, evolution, and the form and function of plants are covered in limited grade levels. The results of the relevance of gene in lesson goals will play an important rein as the primary material in developing the connection between textbooks in which lesson goals are closely related to each other throughout all grade levels in elementary, middle and high schools.