Browse > Article

Effect of Dietary Inclusion of Lactobacillus acidophilus ATCC 43121 on Cholesterol Metabolism in Rats  

Park, Yoo-Heon (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Kim, Jong-Gun (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Shin, Yong-Won (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Kim, Sae-Hun (Division of Food Science, College of Life Sciences and Biotechnology, Korea University)
Whang, Kwang-Youn (Biochemical Nutrition Lab., Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.4, 2007 , pp. 655-662 More about this Journal
Abstract
This study examined the effects of Lactobacillus acidophilus ATCC 43121 (LAB) on cholesterol metabolism in hypercholesterolemia-induced rats. Four treatment groups of rats (n=9) were fed experimental diets: normal diet, normal $diet+LAB(2{\times}10^6\;CFU/day)$, hypercholesterol diet (0.5% cholesterol, w/w), and hypercholesterol diet+LAB. Body weight, feed intake, and feed efficiency did not differ among the four groups. Supplementation with LAB reduced total serum cholesterol (25%) and VLDL+IDL+LDL cholesterol (42%) in hypercholesterol diet groups, although hepatic tissue cholesterol and lipid contents were not changed. In the normal diet group, cholesterol synthesis (HMG-CoA reductase expression), absorption (LDL receptor expression), and excretion via bile acids (cholesterol $7{\alpha}-hydroxylase$ expression) were increased by supplementation with LAB, and increased cholesterol absorption and decreased excretion were found in the hypercholesterol diet group. Total fecal acid sterols excretion was increased by supplementation with LAB. With proportional changes in both normal and hypercholesterol diet groups, primary bile acids (cholic and chenodeoxycholic acids) were reduced, and secondary bile acids (deoxycholic and lithocholic acids) were increased. Fecal neutral sterol excretion was not changed by LAB. In this experiment, the increase in insoluble bile acid (lithocholic acid) reduced blood cholesterol level in rats fed hypercholesterol diets supplemented with LAB. Thus, in the rat, L. acidophilus ATCC 43121 is more likely to affect deconjugation and dehydroxylation during cholesterol metabolism than the assimilation of cholesterol into cell membranes.
Keywords
Hypocholesterolemic effect; L. acidophilus ATCC 43121; rat;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 22  (Related Records In Web of Science)
연도 인용수 순위
1 American Institute of Nutrition. 1977. Report of American Institute of Nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 107: 1340-1348   DOI
2 Gilliland, S. E. and D. K. Walker. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in human. J. Dairy Sci. 73: 905-911   DOI   ScienceOn
3 Grundy, S. M., E. H. Ahrens, and T. A. Miettinen. 1965. Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J. Lipid Res. 6: 397-410
4 Han, S. Y., C. S. Huh, Y. T. Ahn, K. S. Lim, Y. J. Baek, and D. H. Kim. 2005. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890   과학기술학회마을
5 Hong, K. H., K. H. Jang, J. C. Lee, S. H. Kim, M. K. Kim, I. Y. Lee, S. M. Kim, Y. H. Lim, and S. A. Kang. 2005. Bacterial $\beta$-glucan exhibits potent hypoglycemic activity via decreased of serum lipids and adiposity, and increase of UCP mRNA expression. J. Microbiol. Biotechnol. 15: 823-830   과학기술학회마을
6 Levy, R. I. 1981. Cholesterol, lipoproteins and heart disease: Present status and future prospects. Clin. Chem. 27: 653-662
7 Massimi, M., S. R. Lear, S. L. Huling, A. L. Jones, and S. K. Erickson. 1998. Cholesterol 7$\alpha$-hydroxylase (CYP7A): Patterns of messenger RNA expression during rat liver development. Hepatology 28: 1064-1072   DOI   ScienceOn
8 Mayes, P. A. and K. M. Botham. 2003. Lipid transport and storage, pp. 205-218. In P. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell (eds.), Harper's Illustrated Biochemistry, 26th Ed. Mc-Graw-Hill Companies, New York, NY
9 Suzuki, Y., H. Kaizu, and Y. Yamaguchi. 1991. Effect of culture milk on serum cholesterol concentrations in rats fed high-cholesterol diets. Anim. Sci. Tech. 62: 565-571
10 Thakur, C. P. and A. N. Jha. 1981. Influence of milk yogurt and calcium on cholesterol-induced atherosclerosis in rabbits. Atherosclerosis 39: 211-215   DOI   ScienceOn
11 Usman, and A. Hosono. 2001. Hypocholesterolemic effect of Lactobacillus gasseri SBT0270 in rats fed a cholesterol-enriched diet. J. Dairy Res. 68: 617-624
12 Kannel, W. B., J. T. Doyle, A. M. Ostfeld, C. D. Jenbins, L. Kuller, R. N. Podell, and J. Stamler. 1984. Optimal resources for primary prevention of atherosclerotic disease. Circulation 70: 155A-205A
13 American Institute of Nutrition. 1980. Report of American Institute of Nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 110: 1726
14 Fukushima, M. and M. Nakano. 1995. Effect of probiotic on faecal and liver lipid class in rats. Br. J. Nutr. 73: 701-710   DOI
15 Gilliland, S. E., C. R. Nelson, and M. L. Speck. 1997. Deconjugation of bile acid by intestinal lactobacilli. Environ. Microbiol. 33: 15-18
16 Keys, A. 1984. Serum cholesterol response to dietary cholesterol. Am. J. Clin. Nutr. 40: 351-359   DOI
17 Rudling, M. 1992. Hepatic mRNA levels for the LDL receptor and HMG-CoA reductase show coordinate regulation in vivo. J. Lipid Res. 33: 493-501
18 Lipid Research Clinics Program. 1984. The lipid research clinics coronary primary prevention trial results. I, II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251: 351-374   DOI   ScienceOn
19 SAS. 1988. SAS User's guide: Statistics. Ver. 6.2 Ed. SAS Institute Inc., Cary. NC. U.S.A
20 Shefer, S., S. Hauser, V. Lapar, and E. H. Mosbach. 1972. HMG-CoA reductase of intestinal mucosa and liver of the rat. J. Lipid Res. 13: 402-412
21 Mayes, P. A. and K. M. Botham. 2003. Cholesterol synthesis, transport, and excretion, pp. 219-230. In P. K. Murray, D. K. Granner, P. A. Mayes, and V. W. Rodwell (eds.), Harper's Illustrated Biochemistry, 26th Ed. Mc-GrawHill Companies, New York, NY
22 Gilliland, S. E., C. R. Nelson, and C. V. Maxwell. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381
23 de Rodas, B. Z., S. E. Gilliland, and C. V. Maxwell. 1996. Hypocholesterolemic action of Lactobacillus acidophilus ATCC 43121 and calcium in swine with hypercholesterolemia induced by diet. J. Dairy Sci. 79: 2121-2128   DOI   ScienceOn
24 Folch. J., M. Lees, and G. H. S. Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497-509
25 Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159
26 Cill, H. S. and F. Guarner. 2004. Probiotics and human health: A clinical perspective. Postgrad. Med. J. 80: 516-526   DOI   ScienceOn
27 De Smet, I., L. Van Hoorde, N. De Sayer, M. Vande Woestyne, and W. Verstraete. 1994. In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity. Microb. Ecol. Health Dis. 7: 315-329   DOI   ScienceOn
28 Fukushima, M. and M. Nakano. 1996. Effect of a mixture of organisms, Lactobacillus acidophilus or Streptococcus faecalis on cholesterol metabolism in rat fed on a fat- and cholesterol-enriched diet. Br. J. Nutr. 76: 857-867   DOI
29 Brown, M. S. and J. L. Goldstein. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34-47   DOI
30 De Smet, I., P. De Boever, and W. Verstraete. 1998. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79: 185-194   DOI
31 Lee, I. A., S. W. Min, and D. H. Kim. 2006. Lactic acid bacteria increases hypolipidemic effect of crocin isolated from fructus of Gardenia jasminoids. J. Microbiol. Biotechnol. 16: 1084-1089   과학기술학회마을
32 Noh, D. O., S. H. Kim, and S. E. Gilliland. 1997. Incorporation of cholesterol into the cellular membrane of Lactobacillus acidophilus ATCC 43121. J. Dairy Sci. 80: 3107-3113   DOI   ScienceOn
33 Danielson, A. D., E. R. J. Peo, K. M. Shahani, A. J. Lewis, P. J. Whalen, and M. A. Amer. 1989. Anticholesterolemic property of Lactobacillus acidophilus yogurt fed to mature boars. J. Anim. Sci. 67: 966-974   DOI
34 Bottazzi, V., C. Zacconi, E. Gorzaga, and M. Paladino. 1986. Absorption of cholesterol by intestinal lactic acid bacteria. Annali di Microbiologia 36: 1-6
35 Tortuero, F., A. Brences, and J. Rioperez. 1975. The influence of intestinal (ceca) flora on serum and egg yolk cholesterol levels in laying hens. Poult. Sci. 54: 1935-1938   DOI   ScienceOn
36 Parks, D. J., S. G. Blanchard, R. K. Bledsoe, G. Chandra, T. G. Consler, S. A. Kliewer, J. B. Stimmel, T. M. Willson, A. M. Zavacki, D. D. Moore, and J. M. Lehmann. 1999. Bile acids: Natural ligands for an orphan nuclear receptor. Science 284: 1365-1368   DOI
37 Grunewald, K. K. 1982. Serum cholesterol levels in rats fed skim milk fermented by Lactobacillus acidophilus. J. Food Sci. 47: 2078-2079   DOI
38 Ha, C. G, J. K. Cho, C. H. Lee, Y. G. Chai, Y. A. Ha, and S. H. Shin. 2006. Cholesterol lowering effect of Lactobacillus plantarum isolated from human feces. J. Microbiol Biotechnol. 16: 1201-1209   과학기술학회마을
39 Harrison, V. C. and G. Peat. 1975. Serum cholesterol and bowel flora in the newborn. Am. J. Clin. Nutr. 28: 1351-1355   DOI
40 Goldstein, J. L. and M. S. Brown. 1990. Regulation of the mevalonate pathway. Nature 343: 425-428   DOI   ScienceOn