• 제목/요약/키워드: secondary battery

검색결과 646건 처리시간 0.028초

Experiment and Electro-Thermo-Chemical Modeling on Rapid Resistive Discharge of Large-Capacity Lithium Ion Battery

  • Doh, Chil-Hoon;Ha, Yoon-Cheol;Eom, Seung-Wook;Yu, Jihyun;Choe, Seon-Hwa;Kim, Seog-Whan;Choi, Jae-Won
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.323-338
    • /
    • 2022
  • Heat generation and temperature of a battery is usually presented by an equation of current. This means that we need to adopt time domain calculation to obtain thermal characteristics of the battery. To avoid the complicated calculations using time domain, 'state of charge (SOC)' can be used as an independent variable. A SOC based calculation method is elucidated through the comparison between the calculated results and experimental results together. Experiments are carried for rapid resistive discharge of a large-capacitive lithium secondary battery to evaluate variations of cell potential, current and temperature. Calculations are performed based on open-circuit cell potential (SOC,T), internal resistance (SOC,T) and entropy (SOC) with specific heat capacity.

고속 충전을 위한 이차전지모듈 냉각시스템 기술 개발 (Development of Secondary Battery Module Cooling System Technology for Fast Charging)

  • 강석준;김미주;성동길;오미영;배준수
    • 전기화학회지
    • /
    • 제25권3호
    • /
    • pp.119-124
    • /
    • 2022
  • 하이브리드 자동차 및 전기 자동차(하이브리드 및 전기자동차)용 배터리 팩은 고용량 대면적 셀을 적용하기 때문에 배터리 셀의 평균 온도는 중요한 관리 기준이 된다. 최근에는, 배터리 충전시간을 줄이기 위한 고속 충전 기술이 요구되고 있으며, 이에 따른 셀과 전장부품의 발열로 인해 배터리 팩 성능 및 수명의 저하가 발생한다. 따라서, 고속 충전에 따른 배터리 팩의 성능저하를 방지하기 위해 효과적인 배터리 냉각시스템이 필요하다. 본 연구에서는 파우치형 고속 충전용 배터리 셀 적용 냉각시스템 및 모듈 설계를 도출하고 배터리의 효율을 극대화할 수 있는 냉각성능을 분석하였다. 베이퍼챔버 냉각시스템을 적용한 모듈의 온도 편차 분석 결과 모듈 내 온도 편차는 5.82 ℃로 기존 알루미늄 냉각판 대비 낮은 온도를 보여 우수한 냉각시스템 효과를 보였다.

다수의 FET를 이용한 2차 전지의 셀 밸런스에 관한 연구 (Cell Balance of Secondary Battery by Using The Majority FET)

  • 임근욱;조현찬;김종원;김광선;이정수;유상길;강희선
    • 반도체디스플레이기술학회지
    • /
    • 제7권2호
    • /
    • pp.19-22
    • /
    • 2008
  • In this paper, the cell balance of secondary battery using a large number of MOSFETs is discussed. We can balance the cells by controlling battery charging current with help of MOSFETs. If the cells are not balanced, we can not use the whole energy of the battery while charging and discharging, therefore, the energy efficiency is decreased. To increase the energy efficiency, we propose the MOSFET control algorithm which will perform cell balancing by controlling the charging current.

  • PDF

전기차 주행 데이터에 의한 경로별 배터리 상태 추정 (EV Battery State Estimation using Real-time Driving Data from Various Routes)

  • 양승무;김동완;김일환
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.139-146
    • /
    • 2019
  • As the number of electric vehicles (EVs) in Jejudo Island increases, the secondary use of EV batteries is becoming increasingly mandatory not only in reducing greenhouse gas emissions but also in promoting resource conservation. For the secondary use of EV batteries, their capacity and performance at the end of automotive service should be evaluated properly. In this study, the battery state information from the on-board diagnostics or OBD2 port was acquired in real time while driving three distinct routes in Jejudo Island, and then the battery operating characteristics were assessed with the driving routes. The route with higher altitude led to higher current output, i.e., higher C-rate, which would reportedly deteriorate state of health (SOH) faster. In addition, the SOH obtained from the battery management system (BMS) of a 2017 Kia Soul EV with a mileage of 55,000 km was 100.2%, which was unexpectedly high. This finding was confirmed by the SOH estimation based on the ratio of the current integral to the change in state of charge. The SOH larger than 100% can be attributed to the rated capacity that was lower than the nominal capacity in EV application. Therefore, considering the driving environment and understanding the SOH estimation process will be beneficial and necessary in evaluating the capacity and performance of retired batteries for post-vehicle applications.

과염소산을 이용한 팽창흑연의 제조 및 고출력 리튬이온전지 음극재로의 응용 (Preparation of Expanded Graphite using Perchloric Acid and It's Application as Anode Materials for High Power Li-ion Secondary Battery)

  • 박율석;정화;김명수
    • 한국응용과학기술학회지
    • /
    • 제28권1호
    • /
    • pp.85-94
    • /
    • 2011
  • Expanded graphites were used as anode materials of high power Li-ion secondary battery. The expanded graphite was prepared by mixing the graphite with $HClO_4$ as a intercalation agents and $KMnO_4$ as a oxidizing agents. The physical and electrochemical properties of prepared expanded graphites through the variation of process variables such as contents of intercalation agent and oxidizing agent, and heat treatment temperature were analyzed for determination of optimal conditions as the anode of high power Li-ion secondary battery. After examing the electrochemical properties of expanded graphites at the different preparing conditions, the optimal conditions of expanded graphite were selected as 8 wt.% of oxidizing agent, 400 g of intercalation agent for 20 g of natural graphite, and heat treatment at $1000^{\circ}C$. The sample showed the improved charge/discharge characteristics such as 432 mAh/g of initial reversible capacity, 88% of discharge rate capability at 10 C-rate, and 24 mAh/g of charge capacity at 10 C-rate. However, the expanded graphite had the problems of potential plateaus like natural graphite and lower initial efficiency than the natural graphite.

R.F. Magnetron Sputtering을 이용한 리튬이차전지 부극용 Sn1-xSixO2의 제조 및 특성 (Fabrication and Characterization of Sn1-xSixO2 Anode for Lithium Secondary Battery by R.F. Magnetron Sputtering Method)

  • 이상헌;박건태;손영국
    • 한국세라믹학회지
    • /
    • 제39권4호
    • /
    • pp.394-400
    • /
    • 2002
  • 리튬 이차전지용 부극재료로 미량의 실리콘이 첨가된 주석산화물 박막을 R.F. magnetron sputtering법을 이용하여 제조하였다. 실리콘의 첨가로 인해 주석의 산화상태를 감소시켜서 첫 번째 충방전 동안 비가역성을 감소시키는 전기 화학적 결과를 얻을 수 있었다. 주석 산화물 박막의 결정 배향성은 기판온도가 올라감에 따라서 (110),(101),(211) 면들이 성장하였다. 합성된 박막은 기판온도가 $300^{\circ}C$이고 $Ar:O_2$의 비가 7:3일때, 700mAh/g의 에너지 밀도를 가지며 가장 좋은 가역성능을 보여주었다.

이차전지 원료 해쇄용 GRINDING DISC ASS'Y 구조해석에 대한 연구 (A study on structural analysis of GRINDING DISC ASS'Y for secondary battery material decompositiom)

  • 윤동민;전용한
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.36-42
    • /
    • 2022
  • Globally, as population growth and economic development continue, resource consumption is increasing rapidly. As an alternative to electric vehicles was suggested as the environmental pollution problem emerged, the number of registered electric vehicles in Korea increased by more than 137 times compared to 2013. Secondary batteries are expected to expand into various markets such as small IT devices and electric vehicles, and the most important part of electric vehicles is the battery (secondary battery). Therefore, in this study, to analyze the stability of the CSM (Classifier Separator Mill) grinding disc that crushes secondary battery raw materials, structural analysis and vibration analysis of the 1st to 4th grinding discs and the final model were performed. The change of bending by the weight of the Grinding Disc is at least 0.065㎛ and maximum 0.075㎛, and the change by the standard gravity is judged to be very low. The strain is at least 0.00031㎛/㎛ and maximum 0.00078㎛/㎛, and even if the number of Hamer increases, the change by the weight is judged to be insignificant. When the Grinding Disc rotates at a maximum of 6000rpm, the deformation and deformation rate of the first to third models are similar, but the fourth model (Hamer 10EA) is more than three times and the final model (Hamer 12EA) is about four times. However, the maximum deformation is 28.21㎛, which is considered to be insignificant when the change is 6000rpm. Six modes of natural Frequency analysis of the 1st~4th order and final model of the grinding disc appeared to be bent or twisted.

NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성 (Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties)

  • 곽용규;김미소;김유영;최임식;박동규;안인섭;조권구
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

자율이동체를 위한 2차 전지의 확장칼만필터에 기초한 SOC 추정 기법 (Secondary Battery SOC Estimation Technique for an Autonomous System Based on Extended Kalman Filter)

  • 전창완;이유미
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.904-908
    • /
    • 2008
  • Every autonomous system like a robot needs a power source known as a battery. And proper management of the battery is very important for proper operation. To know State of Charge(SOC) of a battery is the very core of proper battery management. In this paper, the SOC estimation problem is tackled based on the well known Extended Kalman Filter(EKF). Combined the existing battery model is used and then EKF is employed to estimate the SOC. SOC table is constructed by extensive experiment under various conditions and used as a true SOC. To verify the estimation result, extensive experiment is performed with various loads. The comparison result shows the battery estimation problem can be well solved with the technique proposed in this paper. The result of this paper can be used to develop related autonomous system.

새로운 시분할 다중 제어 기법에 기반한 다중 출력 충전기 (Multiple Output Charger based on the Novel Time Division Multiple Control Technique)

  • 트란반롱;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 추계학술대회 논문집
    • /
    • pp.13-14
    • /
    • 2013
  • Multiple output converters (MOCs) are widely used for applications which require various kinds of the output voltages due to its advantages in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied to the double ended forward converter for the multiple battery charger. Additional benefit of the proposed topology is to require only one secondary winding in the transformer for all the outputs. The proposed converter can charge two different kinds of batteries or same kind of batteries in different state of charges (SOCs) by CC/CV mode independently with the even degree of tight regulation, thereby satisfying the ripple requirements for each battery.

  • PDF