Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00661

Experiment and Electro-Thermo-Chemical Modeling on Rapid Resistive Discharge of Large-Capacity Lithium Ion Battery  

Doh, Chil-Hoon (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI))
Ha, Yoon-Cheol (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI))
Eom, Seung-Wook (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI))
Yu, Jihyun (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI))
Choe, Seon-Hwa (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI))
Kim, Seog-Whan (Superconductor Research Center, KERI)
Choi, Jae-Won (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI))
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.3, 2022 , pp. 323-338 More about this Journal
Abstract
Heat generation and temperature of a battery is usually presented by an equation of current. This means that we need to adopt time domain calculation to obtain thermal characteristics of the battery. To avoid the complicated calculations using time domain, 'state of charge (SOC)' can be used as an independent variable. A SOC based calculation method is elucidated through the comparison between the calculated results and experimental results together. Experiments are carried for rapid resistive discharge of a large-capacitive lithium secondary battery to evaluate variations of cell potential, current and temperature. Calculations are performed based on open-circuit cell potential (SOC,T), internal resistance (SOC,T) and entropy (SOC) with specific heat capacity.
Keywords
Lithium Ion Battery; Resistive Discharge; External Resistance; Heat Generation; Temperature Estimation; Thermal Modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Feng, M. Ouyanga, X. Liua, L. Lua, Y. Xia, X. He, Energy Storage Mater., 2018, 10, 246-267.
2 U. S. Kim, C. B. Shin, C. S. Kim, J. Power Sources, 2008, 180(2), 909-916.   DOI
3 A. Abaza, S. Ferrari, H. K. Wong, C. Lyness, A. Moore, J. Weaving, M. Blanco-Martin, R. Dashwoodd, R. Bhagat, J. Energy Storage, 2018, 16, 211-217.   DOI
4 Z. Chen, R. Xiong, J. Lu, X. Li, Appl. Energy, 2018, 213, 375-383.   DOI
5 A. Rheinfeld, J. Sturm, A. Frank, S. Kosch, S. V. Erhard, A. Jossen, J. Electrochem. Soc., 2020, 167(1), 013511   DOI
6 J. S. Yi, U. S. Kim, C. B. Shin, T. Y. Han, S. Y. Park, J. Electrochem. Soc., 2013, 160(3), A437.   DOI
7 I. Uchida, H. Ishikawa, M. Mohamedi, M. Umeda, J. Power Sources, 2003, 119, 821-825.
8 N. Ganesan, S. Basu, K. S. Hariharan, S. M. Kolake, T. Song, T. Yeo, S. Doo, J. Power Sources, 2006, 322, 57- 67.
9 D. H. Jeon, S. M. Baek, Energy Convers. Manag., 2011, 52(8-9), 2973-2981.   DOI
10 A. Kriston, A. Pfrang, H. Doring, B. Fritsch, V. Ruiz, I. Adanouj, T. Kosmidou, J. Ungeheuer, L. Boon-Brett, J. Power Sources, 2017, 361, 170-181.   DOI
11 A. Rheinfeld, A. Noel, J. Wilhelm, A. Kriston, A. Pfrang, A. Jossen, J. Electrochem. Soc., 2018, 165(14), A3427.   DOI
12 K. E. Thomas, J. Newman, J. Power Sources, 2003, 119, 844-849.   DOI
13 C. H. Doh, Y. C. Ha, S. W. Eom, Electrochim. Acta, 2019, 309, 382-391.   DOI
14 D. Ouyang, M. Chen, Q. Huang, J. Weng, Z. Wang, J. Wang, Appl. Sci., 2019, 9(12), 2483.   DOI
15 D. Bernardi, E. Pawlikowski, J Newman, J. Electrochem. Soc., 1985, 132(1), 5-12.   DOI
16 C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, B. S. Jin, H. S. Kim, S. I. Moon, Y. K. Hwang, Veluchamy, Bull. Korean Chem. Soc., 2009, 30(4), 783-786.   DOI