DOI QR코드

DOI QR Code

Experiment and Electro-Thermo-Chemical Modeling on Rapid Resistive Discharge of Large-Capacity Lithium Ion Battery

  • Doh, Chil-Hoon (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI)) ;
  • Ha, Yoon-Cheol (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI)) ;
  • Eom, Seung-Wook (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI)) ;
  • Yu, Jihyun (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI)) ;
  • Choe, Seon-Hwa (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI)) ;
  • Kim, Seog-Whan (Superconductor Research Center, KERI) ;
  • Choi, Jae-Won (Next-generation Battery Research Center, Korea Electrotechnology Research Institute(KERI))
  • Received : 2021.07.01
  • Accepted : 2021.10.15
  • Published : 2022.08.28

Abstract

Heat generation and temperature of a battery is usually presented by an equation of current. This means that we need to adopt time domain calculation to obtain thermal characteristics of the battery. To avoid the complicated calculations using time domain, 'state of charge (SOC)' can be used as an independent variable. A SOC based calculation method is elucidated through the comparison between the calculated results and experimental results together. Experiments are carried for rapid resistive discharge of a large-capacitive lithium secondary battery to evaluate variations of cell potential, current and temperature. Calculations are performed based on open-circuit cell potential (SOC,T), internal resistance (SOC,T) and entropy (SOC) with specific heat capacity.

Keywords

Acknowledgement

This research was partly supported by the Korea Electrotechnology Research Institute (KERI) Primary research program (No. 21A01012) through the National Research Council of Science and Technology (NST) funded by the Ministry of Science and ICT (MSIT, Korea) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) (No. 20206910100090).

References

  1. D. Ouyang, M. Chen, Q. Huang, J. Weng, Z. Wang, J. Wang, Appl. Sci., 2019, 9(12), 2483. https://doi.org/10.3390/app9122483
  2. X. Feng, M. Ouyanga, X. Liua, L. Lua, Y. Xia, X. He, Energy Storage Mater., 2018, 10, 246-267.
  3. D. Bernardi, E. Pawlikowski, J Newman, J. Electrochem. Soc., 1985, 132(1), 5-12. https://doi.org/10.1149/1.2113792
  4. C. H. Doh, D. H. Kim, J. H. Lee, D. J. Lee, B. S. Jin, H. S. Kim, S. I. Moon, Y. K. Hwang, Veluchamy, Bull. Korean Chem. Soc., 2009, 30(4), 783-786. https://doi.org/10.5012/bkcs.2009.30.4.783
  5. U. S. Kim, C. B. Shin, C. S. Kim, J. Power Sources, 2008, 180(2), 909-916. https://doi.org/10.1016/j.jpowsour.2007.09.054
  6. J. S. Yi, U. S. Kim, C. B. Shin, T. Y. Han, S. Y. Park, J. Electrochem. Soc., 2013, 160(3), A437. https://doi.org/10.1149/2.039303jes
  7. I. Uchida, H. Ishikawa, M. Mohamedi, M. Umeda, J. Power Sources, 2003, 119, 821-825.
  8. A. Abaza, S. Ferrari, H. K. Wong, C. Lyness, A. Moore, J. Weaving, M. Blanco-Martin, R. Dashwoodd, R. Bhagat, J. Energy Storage, 2018, 16, 211-217. https://doi.org/10.1016/j.est.2018.01.015
  9. N. Ganesan, S. Basu, K. S. Hariharan, S. M. Kolake, T. Song, T. Yeo, S. Doo, J. Power Sources, 2006, 322, 57- 67.
  10. D. H. Jeon, S. M. Baek, Energy Convers. Manag., 2011, 52(8-9), 2973-2981. https://doi.org/10.1016/j.enconman.2011.04.013
  11. Z. Chen, R. Xiong, J. Lu, X. Li, Appl. Energy, 2018, 213, 375-383. https://doi.org/10.1016/j.apenergy.2018.01.068
  12. A. Kriston, A. Pfrang, H. Doring, B. Fritsch, V. Ruiz, I. Adanouj, T. Kosmidou, J. Ungeheuer, L. Boon-Brett, J. Power Sources, 2017, 361, 170-181. https://doi.org/10.1016/j.jpowsour.2017.06.056
  13. A. Rheinfeld, A. Noel, J. Wilhelm, A. Kriston, A. Pfrang, A. Jossen, J. Electrochem. Soc., 2018, 165(14), A3427. https://doi.org/10.1149/2.0451814jes
  14. A. Rheinfeld, J. Sturm, A. Frank, S. Kosch, S. V. Erhard, A. Jossen, J. Electrochem. Soc., 2020, 167(1), 013511 https://doi.org/10.1149/2.0112001JES
  15. K. E. Thomas, J. Newman, J. Power Sources, 2003, 119, 844-849. https://doi.org/10.1016/S0378-7753(03)00283-0
  16. C. H. Doh, Y. C. Ha, S. W. Eom, Electrochim. Acta, 2019, 309, 382-391. https://doi.org/10.1016/j.electacta.2019.04.026