• Title/Summary/Keyword: second order convexity

Search Result 13, Processing Time 0.017 seconds

SECOND ORDER DUALITY IN VECTOR OPTIMIZATION OVER CONES

  • Suneja, S.K.;Sharma, Sunila;Vani, Vani
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.251-261
    • /
    • 2008
  • In this paper second order cone convex, second order cone pseudoconvex, second order strongly cone pseudoconvex and second order cone quasiconvex functions are introduced and their interrelations are discussed. Further a MondWeir Type second order dual is associated with the Vector Minimization Problem and the weak and strong duality theorems are established under these new generalized convexity assumptions.

  • PDF

MULTIOBJECTIVE SECOND-ORDER NONDIFFERENTIABLE SYMMETRIC DUALITY INVOLVING (F, $\alpha$, $\rho$, d)-CONVEX FUNCTIONS

  • Gupta, S.K.;Kailey, N.;Sharma, M.K.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1395-1408
    • /
    • 2010
  • In this paper, a pair of Wolfe type second-order nondifferentiable multiobjective symmetric dual program over arbitrary cones is formulated. Weak, strong and converse duality theorems are established under second-order (F, $\alpha$, $\rho$, d)-convexity assumptions. An illustration is given to show that second-order (F, $\alpha$, $\rho$, d)-convex functions are generalization of second-order F-convex functions. Several known results including many recent works are obtained as special cases.

SECOND ORDER NONSMOOTH MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEM INVOLVING SUPPORT FUNCTIONS

  • Kharbanda, Pallavi;Agarwal, Divya;Sinha, Deepa
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.835-852
    • /
    • 2013
  • In this paper, we have considered a class of constrained non-smooth multiobjective fractional programming problem involving support functions under generalized convexity. Also, second order Mond Weir type dual and Schaible type dual are discussed and various weak, strong and strict converse duality results are derived under generalized class of second order (F, ${\alpha}$, ${\rho}$, $d$)-V-type I functions. Also, we have illustrated through non-trivial examples that class of second order (F, ${\alpha}$, ${\rho}$, $d$)-V-type I functions extends the definitions of generalized convexity appeared in the literature.

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

MIXED TYPE SECOND-ORDER DUALITY WITH SUPPORT FUNCTION

  • Husain, I.;Ahmed, A.;Masoodi, Mashoob
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1381-1395
    • /
    • 2009
  • Mixed type second order dual to the non-differentiable problem containing support functions is formulated and duality theorems are proved under generalized second order convexity conditions. It is pointed out that the mixed type duality results already reported in the literature are the special cases of our results.

  • PDF

A Locally Linear Reconstruction scheme on arbitrary unstructured meshes (임의의 비정렬 격자계에서의 국지적 선형 재구성 기법)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.31-36
    • /
    • 2003
  • A field reconstruction scheme for a cell centered finite volume method on unstructured meshes is developed. Regardless of mesh quality, this method is exact within a machine accuracy if the solution is linear, which means it has full second order accuracy. It does not have any limitation on cell shape except convexity of the cells and recovers standard discretization stencils at structured orthogonal grids. Accuracy comparisons with other popular reconstruction schemes are performed on a simple example.

  • PDF

칸반 시스템의 분석과 설계

  • 김성철
    • Korean Management Science Review
    • /
    • v.9 no.1
    • /
    • pp.3-15
    • /
    • 1992
  • In this paper, we study a manufacturing system of serial stages with general service times, in which the production of each stage and the coordination of stages are controlled by Kanban discipline. This Kanban discipline is modeled as a Discrete Event Dynamic System and a system of recursive equations is applied to study the dynamics of the system. The recursive relationship enables us to compare this Kanban discipline with the other blocking disciplines such as transfer blocking, service blocking, block-and-hold b, and block-and-hold K, and the Kanban is shown to be superior to the other disciplines in terms of makespan and throughput. As a special case, two stages Kanban system is modeled as $C_2/C_2/1/N$ queueing system, and a recursive algorithm is developed to calculate the system performance. In optimizing the system performance, the stochastic optimization approach of Robbins-Monro is employed via perturbation analysis, the way to estimate the stochastic partial derivative based on only one sample trajectory of the system, and the required commuting condition is verified. Then the stochastic convexity result is established to provide second-order optimality condition for this parametric optimization problem.

  • PDF

SOME GEOMERTIC SOLVABILITY THEOREMS IN TOPOLOGICAL VECTOR SPACES

  • Ben-El-Mechaiekh, H.;Isac, G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.273-285
    • /
    • 1997
  • The aim of this paper is to present theorems on the exitence of zeros for mappings defined on convex subsets of topological vector spaces with values in a vector space. In addition to natural assumptions of continuity, convexity, and compactness, the mappings are subject to some geometric conditions. In the first theorem, the mapping satisfies a "Darboux-type" property expressed in terms of an auxiliary numerical function. Typically, this functions is, in this case, related to an order structure on the target space. We derive an existence theorem for "obtuse" quasiconvex mappings with values in an ordered vector space. In the second theorem, we prove the existence of a "common zero" for an arbitrary (not necessarily countable) family of mappings satisfying a general "inwardness" condition againg expressed in terms of numerical functions (these numerical functions could be duality pairings (more generally, bilinear forms)). Our inwardness condition encompasses classical inwardness conditions of Leray-Schauder, Altman, or Bergman-Halpern types.

  • PDF

MONOTONE ITERATION SCHEME FOR IMPULSIVE THREE-POINT NONLINEAR BOUNDARY VALUE PROBLEMS WITH QUADRATIC CONVERGENCE

  • Ahmad, Bashir;Alsaedi, Ahmed;Garout, Doa'a
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1275-1295
    • /
    • 2008
  • In this paper, we consider an impulsive nonlinear second order ordinary differential equation with nonlinear three-point boundary conditions and develop a monotone iteration scheme by relaxing the convexity assumption on the function involved in the differential equation and the concavity assumption on nonlinearities in the boundary conditions. In fact, we obtain monotone sequences of iterates (approximate solutions) converging quadratically to the unique solution of the impulsive three-point boundary value problem.

SHADOWING PROPERTY FOR ADMM FLOWS

  • Yoon Mo Jung;Bomi Shin;Sangwoon Yun
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.395-408
    • /
    • 2024
  • There have been numerous studies on the characteristics of the solutions of ordinary differential equations for optimization methods, including gradient descent methods and alternating direction methods of multipliers. To investigate computer simulation of ODE solutions, we need to trace pseudo-orbits by real orbits and it is called shadowing property in dynamics. In this paper, we demonstrate that the flow induced by the alternating direction methods of multipliers (ADMM) for a C2 strongly convex objective function has the eventual shadowing property. For the converse, we partially answer that convexity with the eventual shadowing property guarantees a unique minimizer. In contrast, we show that the flow generated by a second-order ODE, which is related to the accelerated version of ADMM, does not have the eventual shadowing property.