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ABSTRACT. In this paper, we have considered a class of constrained non-
smooth multiobjective fractional programming problem involving support
functions under generalized convexity. Also, second order Mond Weir type
dual and Schaible type dual are discussed and various weak, strong and
strict converse duality results are derived under generalized class of second
order (F, e, p,d)-V-type I functions. Also, we have illustrated through non-
trivial examples that class of second order (F,«,p,d)-V-type I functions
extends the definitions of generalized convexity appeared in the literature.
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1. Introduction

Investigation on sufficiency and duality results in the fractional optimization
problems with multiple-objective functions has been one of the most attracting
topics in the recent past. Schaible and Ibaraki [22] and Craven [2] have given
many direct and indirect applications of fractional programming problems. In
general, a fractional programming problem is non-convex. Therefore various gen-
eralizations of convexity notions have been proposed by many authors. Hanson
and Mond [9] introduced F-convex functions which were generalized to (F),p)
convex functions by Preda [21]. Liang et al. [15, 16] introduced a unified formu-
lation of generalized convex functions, called (F, «, p, d) convex functions and ob-
tained sufficient optimality conditions and duality results of the single-objective
and multiobjective fractional programming problem. Hachimi and Aghezzaf [6]
gave the concept of (F, «, p,d) type I functions which were further generalized
to (F, a, p,d)-V-type I functions by Gulati et al. [5].
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Second order duality provides tighter bounds for the value of objective func-
tion of the primal problem when approximations are used because there are
more parameters involved and therefore we apply second order duality to get a
lower bound of the value of the primal when first order duality does not apply.
Mangasarian [17] first formulated the second order dual for a nonlinear program-
ming problem by introducing an additional vector p € R™. Instead of imposing
explicit conditions on p, Mond [19] included p in a second order type convexity.
Hanson [8] defined second order invexity for differentiable functions which were
extended to second order pseudo type I, quasi type I by Mishra [18] and sec-
ond order (F, p;,0;)-type I functions by Srivastava and Govil [24]. Hachimi and
Aghezzaf [7] introduced second order (F,«, p,p,d) type I functions which were
extended to second order (F,«, p,d)-V-type I functions by Gulati and Agarwal
[4]. Further, Husain et al. [12] discussed two types of second order dual mod-
els and derived various duality results for a class of nondifferentiable minimax
programming problem under generalized convexity assumptions.

For nondifferentiable programs, Zhang and Mond [25] discussed duality re-
sults under generalized invexity. Ahmad et al. [1] obtained duality results under
generalized second order (F, «, p, d) convex functions for fractional programming
problem involving positive semi-definite symmetric matrices. Jayswal et al. [13]
obtained duality results for second order Mangasarian type and general Mond-
Weir type duals assuming the objective and constraint functions to be second
order (F,a, p,d)-V-type I functions for a nondifferentiable multiobjective pro-
gramming problem. Recently, sufficient optimality conditions and duality theo-
rems are derived for three type of dual models related to multiobjective fractional
programming problem involving (p,r) — p — (1, ) invex functions by Jayswal et
al. [14].

In this paper, we have considered a multiobjective fractional programming
problem in which support function appears in the numerator and denominator
of the objective function and in each constraint. Also, the second order Mond-
Weir type dual and Schaible type dual are formulated and various weak, strong
and strict converse duality theorems under generalized class of second order
(F, a, p, d)-V-type I functions are established.

2. Preliminaries and Definitions

The following convention of vectors in R™ will be followed throughout this
paper: Forz,y E R", s 2y & 2, 2y, T2y S T2y, 2 £ Y, T >y &S 1 >
yi, 1 =1,2,--- ,n. Let D be a non-empty subset of R".

Consider the multiobjective programming problem:

(MP) Minimize f(x) subject to h(z) <0,

where x € D, X = {x € D : h(z) < 0} be the set of feasible solutions of (MP).
Also, f: D — RF and h: D — R™ are second order differentiable functions.

Definition 2.1 ([20]). Let C' be a compact convex set in R™. The support
function of C' at x € R is S(z|C) = max{zTy : y € C}.
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The subdifferential of S(y|C) is given by 9S(y|C) = {z € C : 2Ty = S(y|C)}.
For any set A C R", the normal cone to A at any point x € Ais Na(z) = {y €
R":yT (2 — 1) <0,Vz € A}. Also y € No(x) iff S(y|C) = z2Ty.

Definition 2.2. A functional F' : D x D x R™ — R is said to be sublinear in
the third variable if for any z,u € D C R",

F(z,u;a1 + az) £ F(z,u;a1) + F(x,u;a2), ¥V a,as € R™,
F(z,u;0a) = aF(z,u;a), Va € R, 20, Y a € R".

Let the functions f = (f1,---,fx) : D — RF and h = (hy,--- ,hy) : D —
R™ are second order differentiable at v € D. Also, let «, & are the vectors
in R¥t™ whose components are the functions o}, o : X x D — Ry \ {0}
1,3 0 X x D — Ry \ {0} respectively for i = 1,k,j = 1,m, while
p=(pt,--,pt,p3,--,p) € R*™ and p € R? whose components are in R
and function d(.,.) : X x D — R, with the property that d(z,y) =0 iff v = y.

and &

Definition 2.3 ([4]). (f,h) is said to be second order (F, «, p,d)-V-type I func-
tion at u € D w.rt. p,ge R ifforallz € X andi=1,k,j=1,m:

filz) = filu)+ %pTVin(U)p 2 Fw,u;0q (2, u)(V fi(w) + V2 fi(w)p)) + pi d* (z, u)

—hj(u) + %QTVth(u)q = F(z,u; a?(m, w)(Vh;(u) + V2hj(u)q)) + p?dQ(a:,u)

If the inequalities in f; are strict (whenever x # w), then (f,h) is said to be
second order semi-strictly (F,a, p,d)-V-type I function at wu.

Remark 2.1.

(i) If we take o (z,u) = al(z,u); a?(x,u) = o?(z,u) for all i = 1,k;j =
1,m, the above definitions become that of second order (F,a, p,p,d)-
type I function introduced by Hachimi and Aghezzaf [7].

(1) If aj(z,u) = of(z,u) = 1 for all i = 1,k;j = 1,m, we get definition
of second order (F,p;,o;)-type I by Srivastava and Govil [24] and sec-
ond order (F,p;) convex and second order (F,o;) convex functions by
Srivastava and Bhatia [23].

(7i7) If in the above definition, we take p,q = 0, then the above definition
reduce to that of (F,«, p,d)-V-type I function given by Gulati et al. [5].

(iv) If af (z,u) = a'(z,u); a?(z,u) = o?(x,u) for all i = 1,k;j = I,m,
and p,q = 0, then we get the definition of (F,a, p,d)-type I function
introduced by Hachimi and Aghezzaf [6].

(v) If sublinear functional is defined as F(x,u;a) = n(x,u)” a where a € R"
and n(z,u) : X x D — R™ is a vector function and p} = p? = 0 for all

i=1,k;j =1,m and p,q = 0, then above definition reduces to V-type
I function ( Hanson et al. [10]).
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Definition 2.4 ([4]). (f,h) is said to be second order quasi
I function at w € D w.r.t. p,qg € R™ if for all x € X and i = 1,

)-V-type
,m

Fa,p,
J =
Za (@) (1) = Ftw) + 397 Vi) <0

k
=F (x u; > (Vfilu) + v2fz-(u)p)> < —p'd*(z,u)

i=1

2 &) (*hﬂ'(“) + %qu2hj(u)Q) <0
j=1

=F (x u; Z(Vh )+ VZ2h;(u)g )) < —p2d% (z,u)

j=1
If the second (implied) inequality in f is strict (whenever x # w), then (f, h) is
said to be second order semi-strictly quasi (F, &, p, d)-V-type I function at w.

Definition 2.5 ([4]). (f, k) is said to be second order pseudo (F, &, p, d)-V-type
I function at w € D w.rt. p,g€ R* ifforallz € X andi=1,k,j =1,m:

k
F (x,u;Z(Vfi(u) + v%(u)p)) 2 —p'd*(z,u)

i=1

k
=3 6 (e, u) (ﬁ-( )= Fulu) + pTvm(u)p) >0
=1

F (mu > (Vhj(w) + V7hy (u)q)) = —p*d*(z,u)

=1
Z (z,u) (*hj(u) + %‘ZTVZhj(’“)‘Z) 20

If the second (implied) inequality in f (resp. h) is strict (whenever = # w),
then (f,h) is said to be second order semi-strictly pseudo (F, &, p,d)-V-type I
function in f (resp. h) and if the second (implied) inequality in both f and h
are strict (whenever x # u), then (f, h) is said to be second order strictly pseudo
(F, &, p,d)-V-type I function at u.

Definition 2.6 ([4]). (f,h) is said to be second order quasipseudo (F:
type I function at w € D w.r.t. p,g € R"ifforallz € X and i =1,

,d)-V-

1,m:

,
2 J

H El

Za z,u (1 z) — fi(u)Jr%pTVin(U)p) <0

< —ptd?(z,u)

=F (z u; Z(sz + V2 fi(u)p)

i=1

(x u; Z(Vh )+ VZ2h;(u)g ) > —p2d%(z,u)

= > aj(w,u) (—hj(u) + 5quz q) >0
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If the second (implied) inequality in A is strict (whenever z # ), then (f, h) is
said to be second order quasi strictly pseudo (F, &, g, d)-V-type I function at u.

Definition 2.7 ([4]). (f, k) is said to be second order pseudoquasi (F, &, g, d)-V-
type I function at w € D w.r.t. p,g e R*ifforallz € X andi=1,k,j=1,m:

k
F (x,u;Z(Vfi(u) + v%(u)p)) 2 —p'd*(z,u)

i=1

b ~1 1 T 72
=Y aj(z,u) (fi(ﬂf) — fi(u) + 5P \% fi(u)p) 20
i=1

2 & (@) (’hﬂ'(“) + %qTVZhj(u)q) <0

j=1

=F (xu > (Vhj(u) + V7hy (u)q)) < —p*d*(z, u)
=1
If the second (implied) inequality in f is strict (whenever = # u), then (f,h) is
said to be second order strictly pseudoquasi (F, &, g, d)-V-type I function at w.

Consider the following nondifferentiable multiobjective fractional program-
ming problem involving support functions.

e fi(z)+S(z|Ch) fi(x)+S(z|Ck)
(FP) Minimize (m7 T m)

subject to h;(z) + S(z|E;) £ 0, j = 1,m, where z € D C R", X = {z €
D : hj(z) + S(z|Ej) £ 0} be the set of feasible solutions of (FP) and for
i =1,k j=1m, fi,g9:;,h; : D — R are second order differentiable functions.
[i(.)+S(Cs) 2 0,6:(.) = S(.|D;) > 0;Cy, D;, E;j are compact convex sets in R"
and S(z|C;), S(x|D;), S(x|E;) define their respective support functions.

3. Illustration

In this section, we illustrate through examples that the class of second order
(F,a, p,d)-V-type I functions contains many earlier studied classes as special
cases.

Example 3.1. For (MP),let D = R, f = (f1,f2): D — R?, h: D — R such
that fi(z) = —22 — 1, fo(z) =222 +2+1, h(z)=1—-2x

So, the feasible region is X = {x € D : x = 1}.

Let F(z,u;a) = &(a? +u? — 1); of(z,u) = 95 aj(z,u) = 25 o?(z,u) = 18;
pr=3 pp=0 p* =2 d@u)=r—ul u=1p=1; ¢=2.

It is easy to see that for all z € X,

f1(@) = f1(w) + SpT V2 fu(lp 2 Fla,usab e, u) (VA + V2A0) + ol ), (31)

Fale) = fow) + SpTV2 W 2 Fo,us b (@, )(Vala) + V2 Fa(wp) + o3 (@0, (3.2

and —h(u) + 3¢"V?h(u)q = F(z,u; o?(z,u)(Vh(u) + V2h(u)q)) + p?d*(z, u)
which shows that (f, k) is second order (F,«, p, d)-V-type I function at u = 1.
But, for the above defined problem, if we take
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(a) (i) al(z, u) = a(z,u) = 2, then for all x € X,

fi(@) = fr(u) + 50" V2 fi(u)p < F(z,u; o (2,u)(V f1(w) + V2 f1(u)p)) +pid® (,u)
(ii)ad (z,u) = az(x,u) =9, then for all x € X,

f2(2) = fa(u) + 50" V2 fi(u)p < F(z,u; 032, u)(V fo(u) + V2 f2(u)p)) + phd® (2, u)
In fact, the inequality (3.1) is satisfied for all ai(z,u) > 9 and the inequal-
ity (3.2) is satisfied for all a(z,u) < 2. Therefore, the inequalities (3.1) and
(3.2) can not be satisfied simultaneously for any value of a!(z,u) such that
al(w,u) = al(r,u) = ad(x,u) and hence (£, h) is not second order (F, o, p, p, d)-
type I function at u € D as introduced by Hachimi and Aghezzaf [7].

(b) if a}(z,u) = ad(z,u) =1, then for all z € X,

Fi(@) = fi(u)+5p" V2 fi(w)p < Fa,u; o (2, 0) (Vi (u) + V2 f1(u)p) +pid? (z, u)
which shows that (f, k) is not second order (F), p;,0;)-type I function at v € D
as introduced by Srivastava and Govil. [24].

(c)if p=0, then at z =3

fi(@) = filw) < F(z,uai(z,u)V fi(w) + prd(z,u)

which shows that (f,h) is not (F, «, p,d)-V-type I function at v € D as intro-
duced by Gulati et al. [5].

Therefore the above example clearly illustrates that the class of second order
(F, a, p,d)-V-type I functions is more generalized than the class of second or-
der (F,a, p,p,d)-type I functions, second order (F, p;,o;)-type I functions and
(F, a, p,d)-V-type I functions.

Example 3.2. For (MP), let D = R, f = (f1,f2) : D — R% h = (hy,h2) :
D — R? such that

fi(x) = =822 + 8z, fo(x) = —242* + 822 + 16, hi(x) =z, ho(z) =2 — 1

So, the feasible region is X = {x € D : x £ 0}.

Let F(x,u;a) = lal(a? + v?); Gi(z,u) = 35 G3(z,u) = g3 6f(z,u) = g
&3(w,u) = 7 of(w,u) = 2 agw,u) = 8 of(w,u) = 6; ad(w,u) = 4; d(v,u) =

|z —ul; u=0; p=1 pj =—16; py=10; p} =6; p5=8; p' = =8
easy to see that for all z € X,

2
> o) (o) = ) + 307 VA R0p) = 30t 47 45 + 42 20
=1

2
= F (x,u,Z(w )+ v%(u)p)) + 5 d*(w,u) = 82" — 82 <0
1=1

and

0

NG
v

= S @ u)(—hi(w) + 5a V() =

which shows that (f, k) is second order quasi-pseudo (F, &, g, d)-V-type I func-
tion for all z € X at wu.
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However, for the above defined problem, if we take z = —1, then

fi(x) = fi(u) + %pTvzfl(u)p = —8a% + 8z — 8p*
< F(x,u;aq(z,u)(Vfi(u) + V2 fi(u)p)) + prd®(z, u)
= 2|8 — 16p|z® — 1627

which shows that (f, h) is not second order (F, «, p, d)-V-type I function for all
z € X at u.

Example 3.3. For (MP), let D = R, f = (f1,f2) : D — R% h = (hy,h2) :
D — R? such that .

filx) =5 4222, fo(x) =2 + 5 + 2% =2, hy(x) =, he(x) =

The feasible region is X = {x € D : < 0}.

Let F(z,u;a) = |a|(2? + 4u?); al(z,u) = 4; ad(z,u) = 2; a2(x,u) = 1;
dg(x,u) = % a%(as,u) = %; a%(x,u) -3 =
|z —ul; u=0; p=1 p;1=4; py=4; p
It is easy to see that for all z € X,

2
F <x,u; > (Vi) + V2f¢(u)p)> + p'd® (z,u) = |6p| 2° 4 242% > 0

2

i=1

2
= F (x,u;Z(th (u) + Vth(u)q)> + pPd (z,u) = =32 £0
Jj=1

which shows that (f, k) is second order pseudo-quasi (F, &, p, d)-V-type I func-
tion for all z € X at u.
However, for the above defined problem, if we take x = —1, then

4
Ji(x) = fi(u) + %pTVQﬁ(u)p = % + 222 + 2p?
< Fz,u; a1 (2, u)(Vfi(u) + V2 f1(u)p)) + pid* (z,u)
= |p|la® + 42°

which shows that (f, h) is not second order (F, «, p, d)-V-type I function for all
z € X at u.

Therefore the above examples clearly illustrate that the class of second or-
der (F, «, p,d)-V-type I functions is more generalized than the cited classes in
literature.
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4. Second Order Mond-Weir Type Dual

In this section, we establish weak, strong and strict converse duality theorems
for second order Mond-Weir type dual of (FP) under generalized class of second
order (F,a, p,d)-V-type I functions.

(MFD) Maximize

(.fl(u)+uTZ1 1 T2 (.fl(u)+uTZ1> fr(w) +uTz, 1 T2 <fk(u)+uTZk> )
Sy tw = 2 JRmW TR A, IR SR JRiw) Y Zk )

g1(u) —uTv; 2 g1(u) —uTvy "gk(u) —uTv, 2 gr(u) — uT vy

subject to

k
w) +u oz
v (Son (L) + S won w))

. (4.1)
(;)\1 (%) +Zyg ) +u wj)q> =0,
‘z%( +uwrqu(<Hw%szm (4.2)

2z €C;, v; €D, i=1,2,+- k, A\>0,w; €Ej, y; 20, j=1,2,--- ,m.
Theorem 4.1 (Weak Duality). Let x and (u,z,v,w,y, \,p,q) be the feasible
solutions of (FP) and (MFD) respectively with A\; >0, i =1,2,--- k. If
(4) %7 Z yi(hi () + ()Tw;) | is second order

(Fyay p,d)-V- type Ifunctwn atu fori=1,2,--- k,

k
g Aip;
(”) z; al(z,u) + a"’(:c u) = Z0
) fi(z)+5(z|C S (@) +5(x|Cr) filwtuTz
then the following cannot hold (gll(m)—S(m\Dll - g’:(m) S(I‘D’; ) <gi(u) Tor

)
)’
TV2< u)tu Zl)p,... fr(w)+u” 2 _% (ave’ (fk(u)-i-u Zk) )

gl(u) uT vy Y gr(u)—uT vy gr(u)—uT vy
Proof. Suppose the contradiction holds. Since \; > 0, 27z < S(z|C;), Tv; <
S(z|D;), a}(z,u) >0, i=1,2,--- ,k, we have

k

> x (fi(x) tos  flwbus, TV (7““) +“TZZ'> p> <0 (43)

2 al(e,u) \gi(@) —aTv;  gi(u) —uTo, g:(u) — T,

Since hypothesis (i) holds, therefore for i = 1,2,--- , k, we have

file) + 2Tz filw) +u’z
gi(z) —2Tv;  gi(u) —uTy;
. Jilu) +u” z o filu) +u’z
> F <:1:,u, a% (z,u) <vgi(u) v +V ai(w) = uTvip>) (4.4)
pT'v? <JW

gi(u) — uTU‘> ppidi(e),




Second Order Nonsmooth Multiobjective Fractional Programming Problem 843

—Zyj(hj( )+ u wj)
>F (x u; o (VZ% )+ u"w;) + V2 Zyj )+uTU}j)q)) (4.5)

3 DRy s () + w0 + R )

j=1

Multiplying the inequality (4.4) by al()‘; ) and taking summation for i
1,2,--- ,k, we get '

Zal)\i <fi(x)+xTZl filw) +u” 21>

gi(x) —zTv gi(u) — uTv;

> i (s (VI Wy el “Tzip)> (46)

gi(u) —uTv; gi(u) — uTv;

k k
]. )\z T2 fl(u) + UTZZ' )\Zpl 2
_ JUE) D~ i 4
s e (e )7 2 T @

On adding the inequalities (4.5) and (4.6) and using sublinearity of F' alongwith
equation (4.1), the inequality (4.2) and the hypothesis (i), we obtain

k
)\ x) + 2Tz (u) +ulz, 1 (w) + uTz;
Dy UETE (TSNS WA TR
“ al(w,u) \gi(x) —aTv;  gi(u) —uTv; 2 gi(u) — uTv;
which is a contradiction to (4.3). Hence the proof. O

Theorem 4.2 (Weak Duality). Let x and (u,z,v,w,y, A\, p,q) be the feasible
solutions of (FP) and (MFD) respectively. If

vg9i(-)— ()Tv’

(F,a, p,d)-V- type Ifunctwn atu fori=1,2,--- ,k,
(i) p* +p* 20,
then fori=1,2,---  k, the following cannot hold

filw) + S(lCy) _ filw) +uTz (L),

(7) ()\ EORORT Z y;i(hi () + (. )ij)> is second order pseudoquasi

gi(x) = S(x|D;) ~ gi(u) —uTv; 2p

Proof. Suppose the Contradiction holds.
Since 27z, < S(2|Cy), zTv; < S(z|D;), a}(z,u) >0, i = 1,2, k, A > 0,
therefore

gi(x) — 2T, gz(u) —uTy; 2
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Also, by feasibility of (u, z, v, w,y, A\, p,q) and &*(z,u) > 0 imply

A

xufj< (1) 4 ;) + 57Ty (0) + )y ) S0

Therefore by using hypothesis (i), we have

k
filu) +u2 zfl(u)JruTzi 19
F S WAV (f LS NS v Rl i _ptd¥(z,
(x’u’; < gi(u —’U,T’Uz gz(u) _uTvip < P (x U)

Fla,u Zyj )+ ulwy) + V2(hy(u) + ulwy)g) | £ —p*d* (2, u)

Using hypothesis (i) and sublinearity of F, the above inequalities reduce to

k

filw) +ulz o filw) +uz
<am§%(vﬁmiﬂm+vaofﬂwm
+Zyg )+ ulwy) + V2 (i (w) + ulw;y)q)) < — (5" + p%) d*(x,u) £ 0
which contradicts F'(x,u,0) = 0. Hence the proof. O

The proof of the following theorems run on the same lines as the proof of the
above theorem.

Theorem 4.3 (Weak Duality). Let z and (u, z,v,w,y,\,p,q) be the feasible
solutions of (FP) and (MFD) respectively with A; > 0,1 =1,2,--- k. If
(0) | A %, Z y;i(hi() + ()Tw;) | is second order pseudoquasi

(F,a,p,d)-V- type Ifunctzon atu fori=1,2,---,k,
(if) 5 + % 2 0
then the following cannot hold

(fl(r)+5( 2|0y fk<m>+s<z\ck>>
91(@) = S@D1) " gul@) — 5(@lDx)

< filw) +uTz 1 T2 Ji(w) +uTz e et 1 T2 o (u) + u7'z,

S\ gi(uw) —uToy 2? g1(u) —uTvy P T gr(u) — uT vy 2? gr(u) — uT vy Pl
Theorem 4.4 (Weak Duality). Let x and (u,z,v,w,y, A\, p,q) be the feasible
solutions of (FP) and (MFD) respectively. If

OREY %7 Z yi(h;i () + ()Tw;) | is second order strictly pseudo

(F,a, p,d)- Vtype Ifunctzon atu fori=1,2,--- Kk,
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(i6) p* + % = 0
then the following cannot hold
(fl(ﬂﬂ) +S8@|C1) fe(z) + S(w\ck))
g1(z) = S(z|D1)" 7 gi(z) — S(z|Dr)

< filw)+uTz 1 T g2 fi(uw) +ulz e e 1 T2 fr(u) +u” 2z,
S\gi(u) —uTuy 2? g1(u) —uTvy P " gr(u) — uT vy 2? gr(u) — uT vy Pl
Theorem 4.5 (Weak Duality). Let x and (u,z,v,w,y, \,p,q) be the feasible
solutions of (FP) and (MFD) respectively. If

OREY ﬁmv Z yi(h;i () + ()Tw;) | is second order semi-strictly quasi

(Fya, p,d)-V- type Ifunctwn atu fori=1,2,--- k,
(i) P +7° 2 0
then the following cannot hold
(fl(ﬂﬂ) + S(=|Ch) L Fr(z) + S(w\ck))
g1(z) — S(z|D1) gk(x) — S(z|Dy)
< <f1(u) +ul 2

g1(u) —uTvy

_ 1 g (1) +ulz M) el 1 ro2 (S +ulz
2 g1(u) —uTvy Tgp(u) —uTv, 2 gk (u) — uT vy '
Strong duality theorem for the given model can be established on the lines of
[3,11].

Theorem 4.6 (Strong Duality). If u is an efficient solution of (FP) and con-
straint qualification [3, 11] is satisfied, then there exists X € R¥,§ € R™, Z;, 0, W,
€ER" i=12--,kj=1,2---,m, such that (u, 2 0, w,\,§,p=0,q =0) is
a feasible solution of (MFD) and the corresponding values of the objective func-
tions are equal. Further if the conditions of weak duality theorem 4.1 are satisfied
for each feasible solution of (FP) and (MFD), then (u,Z,v,w,\,§,p = 0,q = 0)
is an efficient solution of (MFD).

Theorem 4.7 (Strict Converse Duality). Let x and (u,z,v,w,y, \,p,q) be the
feasible solutions of (FP) and (MFD) respectively. If

() SRS < St - b7V (S ) v = 12k,

(44) %, Z y;(hi() + ()Tw;) | is second order semi-strictly

(F,« p,d) V- type Ifunctwn at u fori=1,2,---,k,
k

(”Z) ZE 1(1913 u) + az(z u) = Z0
then x = u.
Proof. Suppose x # u. Since hypothesis (i) holds, therefore for ¢ =1,2,---  k,
we have

i(z zT 2 i (u u”l z; i (w ul z; i (u u?l z;

fi@) +alz fil) bulan <x7u;a;(x7u) (VM ) el o filw) + p))

gi(z) —aTvi  gi(u) —uTv; gi(u) — uTv; gi(u) — uwTv;

(4.7)
Ly (fz‘(u) +ulz

2 gi(u) — uTv;

) p+pid(z,u)
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and

m

—Zy; u) +u w])
2F (w,wa (VZ% ) +ulw;) + V2 Z% )+uTw]~)q>) (4.8)

j=1

—5q v ZyJ )+ ulw;)g + p*d* (w, u)

Multiplying the inequality (4.7) by % for i =1,2,---  k, adding to the
inequality (4.8) and using sublinearity of F, we obtain
k

Ai file) + 2"z filw) +uTm o~y (u) + uw,
Z O‘zl(x u) (gi(z) — xTw; ) ; o?( )(hj( ) + g)

i—1 ) gz(u) - uTUi 1 T, u
k m
filw) +ulz | oo fi(w) +u Zi
F . .
> (x,u,;xl (vgi(u) o TV o +Zy] )+ uTw;)
k
1 Y filu) +u' 2
2 T _ 1t PpTV?
+ V7(hj(u) +u” wj)q)) 2;%1(%”) \ <gz(u)—uTU1>
- quEm: Yi V2 (hj(u) +u"w;)g + zk: Aip; + r d?(x,u)
27—~ a?(z,u) ’ ’ — aj(z,u)  o(z,u) ’

Using equation (4.1), the inequality (4.2) and hypothesis (i7¢) and the fact that
F(z,u,0) =0, the above equation reduces to

zk: 1)\1' file) + 2"z filw) +u’z 41 Tv2 filw) +u”2 p) >0
— aj(z,u) \gi(z) —zTvi  gi(u) —ulv; 2" gi(u) —ulv;
But, as 272, < S(z|C;), 2Tv; < S(z|D;), al(x,u) >0, i=1,2,--- ,k, A >0,
therefore hypothesis (7) yields
k
Z i Ai (fz(m) ‘Hﬂizi ~ filw) + U;P«Zz " lpTvz (fz(u) + Uizl) p> <0
—~ a (x,u) \gi(x) —2Tv; gi(u) —uTv; 2 gi(u) —uTv;

Hence we arrive at a contradiction. Thus x = w. O

Theorem 4.8 (Strict Converse Duality). Let x and (u,z,v,w,y, \,p,q) be the
feasible solutions of (FP) and (MFD) respectively. If
(i) fi(@)+8([Ci) < filw+ulz 1pTy2 (fz(u)Jru Z’)p, i=1,2,-- k,

gi(x)=S(x|Di) = gi(u)—uTv gi(u)—uT
(1) ()\ ; TZ‘ Z y;i(hi() + (. )ij)> is second order quasi strictly pseudo

(F, &, p,d)- Vtype[functzon atu fori=1,2,---,k
(iii) p* + p? = 0, then = = u.

)
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Proof. Suppose x© # u. Since 7z, < S(x|C;), zTv; < S(z|D;), al(x,u) >
0, i=1,2,--- ,k, A >0 and hypothesis (i) holds, therefore

ZA al(z, )M<ZAM (z, u) (M_lpTvz (M)p)

i(z) —aTv; gi(u) —uTv; 2 gi(u) — uTv;

As &%(z,u) > 0 and u is a feasible solution of (MFD), therefore
MZ%( )+ ) + 30"y + u"w)a) S0

Using hypothesis (i7), the above inequalities reduce to

a (m,u;zk:ki (vfz:gu; +ulz L V2 Ji(u) +uTzip)> < 'z, u)
im1

gi(u) —uTv; gi(u) — uTv;

(a: u,Zy7 ( )+ u"w;) + V2 (hy(u )—i—uij)q)) < —p’d*(z,u)

Using hypOtheblb (#91) and sublinearity of F, the above inequalities reduce to

wuz < .u)+u Zl-i—VQfZ(u)ju Zl_p)—&-

(u) —uTw; gi(u) —uTv
Zya )+l wy) + V2 (hy(u) + u"wi)g)) < — (5" +57) d*(z,u) <0
Wthh contradicts F(x,u,0) = 0. Hence z = u. O

5. Second Order Schaible Type Dual

In this section, we formulate Schaible Type Dual of (FP) and derive weak,
strong and strict converse duality theorems.

(SFD) Maximize 3 = (By, Ba, -+ , Bi)
subject to

k
v (Z)w <f,(u) +ulz — Bz(fh(u —ulo; ) +Zy] )+ u w3)>
i=1

(5.1)
k
+Y V2 (fi(u) +u”z — Bi(gi(u) — UTW)) p+ Z y; V2 (hj(u) + uwj)g = 0,
i=1 j=1
N (fiC) + 21 = BilgaCu) — u00)) = 2p7V? (filw) + 51 — BilgaCu) —uTw)) p 52
20, i=1,k
S T 1 T~72 T
35 (g +Tw) = 307V (s () +uTws)a) 20, (5.3
j=1

ZiGCi, viEDiz 62207 i:1727"'7k7 )\20
’LU]GEJ, yjz()’ ]:1727am
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Theorem 5.1 (Weak Duality). Let z and (u,z,v,w By, A\, q ) be the feasible
solutions of (FP) and (SFD) respectively with \; > 0, i = 1 2,k If

(@) (fi )+ zu;lyg( i)+ w;)) and (—gi()+() T vi, _Z Y5 (hi ()+() T w;))
are second order (F,a, p,d)-V-type I functions at u for 1=1,2,--- |k,

(i%) Xk: al(z, u)hipt + @& (z,u)p? 2 0 where p} = pH(1+ 5;).

thenZ?;Le following cannot hold

(f1<x>+s<x|ca>  fule) + S(e|Cw)
g1(@) — 5(@D1)’ " gel@) — S(alDy)

Proof. Suppose the contradiction holds. Since \; > 0, 27z < S(z|C;), Tv; <
S(z|D;), al(z,u) >0, i=1,2,---  k, therefore

) < (Bu.Bos -\ B).

Za T, u) ( () + 2Tz — Bi(gi(x)—xTvi)) <0 (5.4)

By hypothesis (i), for i =1,2,---  k, we have

(fi@) + 27 2:) — (fi(w) +uT 2:) 2ZF (@, u; 0] (w,u)(V(fi(w) +u” 2) + V2 (fi(u) + u” 2:)p))
(5.5)
— 2P V(i) Tzl ),

- (gz( ) x UZ) + (gl(u) Tvl)
2 F(x,u;0f (2,0) (= V(gi(u) = uTvi) = V2(gi(uw) —uTvi)p))  (5.6)

+ szvz(gz( ) - uTvz)p+ ple(.r u)

—Zyj ) tu w])
2F< <Zyg )+ uT) 4 300 >+uij>q>) (5.7)

Jj=1

1 m
52%‘1 V2 (hy(w) + u" wy)q + p*d* (x,u)

Multiplying (5.6) by fi, i = 1, k, adding in (5.5) and using sublinearity of F,
we get

(file) + 2"z = Bi(gi(w) — 2Tv:)) = (filw) + w2 — Bi(gi(uw) — u"vy))
2 Fla,ual @)V (filw) + 0"z = Bilgi(u) —uTv))

+ 92 (Fulw) a2 = BulgiC) = aT0) o) — 37 V(i) + 2

Bi(gi(w) — uTvi))p + i d? (x,u)

(5.8)
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where p! = p}(1 4 ;). Multiplying (5.8) by &!(z,u)\; , i = 1,2,--- ,k and
adding in (5.7), we obtain

M”

&l @ W [fi(@) + 272 = Bilgi(@) — 2T ve) = (filw) + Tz = Bilgiu) —u"v0))]

i=1

k
— &% (x,u) Zy] Y+ uTw;) 2 F(z,u;ZAi[V (fl(u) +ulz — Bi(gi(u) — uTvi))
i=1

+ V2 (fi(U) +ulz = Bi(gi(u) — UTW)) pl+ >y [V(hy(u) + ulwy) + V2 (hy(w) + u"w;)q)])
j=1

k
%Z (e \p" V2 (Fi(w) + 0"z = Biloi(w) — uw0) ) p — S8 (o >

j=1
k
q"V2 (hj(u) + u"wj)g + (Z aj(z,u)hip; + & (a, U)pz) &*(z,u)
=1
Using equation (5.1), the inequalities (5.2),(5.3), the hypothesis (i7) and the
fact that F(x,u,0) = 0, the above inequality reduces to

ZO‘ (z,u) ( () + 2z - Bi(gi(x)—xTviDzo

which is a contradlctlon to (5.4). Hence the proof. O

Theorem 5.2 (Strong Duality). Let u be an efficient solution of (FP) and a con-
straint qualiﬁcation is satisfied, then there exists \ € R* i € R™, %, 0, w; € R",
1=1,2,--- k;5=1,2,- ~msuchthat(u2@u’;ﬁ~y75\p 0,q =0) is a fea-
sible solution of (SFD). Further if the conditions of weak duality theorem 5.1 are
satisfied for each feasible solution of (FP) and (SFD), then (u, z, 0, @ B,y A p =

0,q = 0) is an efficient solution of (SFD) and the corresponding values of the
objective functions are equal.

Proof. Following the lines of [3, 11], it can be shown that there exists ji € R¥, ¢ €
R™, Z,v5,w; € R", i =1,2,--- ,k;j=1,2,--- ,m, such that

v i(“um> i W +uTw) | =0 (5.9)
2 g~ ) 2 ; : .

and .
Z ) +ulw;) =0,

where u’'z; = S(u|C;), uTv; = S(u|D;),z; € Cs, v; € Dy i =1,2,--+ k,ji >0
uw; = S(ulE)), w; € Ej, §; 20, j=1,2,---
Equation (5.9) can be written as

k

’m’

iL: . T m
o (v(ﬂ(uw%_ Jow T E G m) 35Tyt =0

= gi(u) —uTy; gi(u) —uTo;
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SettingXi_Wandﬁz—%J—l, .-k, we get

Zk: ( ) +ulz — Bz’(gi( uvz> Xm: )+ u wj) =0,

filw) +u”z — Bi(gi(uw) —u"v;) =0, i =Tk

CQ

ul'z; = S(u|Cy), uTy; = ( |D) Zi €Ci, v € Djyi=1,2,--- .k, A\ >0,
u'w; = S(u|E;),w; € Ej, §; 20, j=1,2,--- ,m.

Thus (u, z, 0, @, B,y,A p = 0 q = 0) is a feasible solution of (SFD) and the
corresponding values of the objective functions are equal. O

Theorem 5.3 (Strict Converse Duality). Let x, and (uo,z,uw,g,y,)\,p, q) be
the feasible solutions of (FP) and (SFD) respectively. If

N fi(20)+S(2|Ch)
(i) LeleetBlralC) < 3 i =1,2,-+ ,k,

(i) (Ai (AO+ 02 = B0+ O0) X 000 + <.>ij>>
J:
second order semi-strictly quasi (F, &, p,d)-V-type I function atu,,
(ii) p' +p* 20,

then x, = u,.

Proof. Suppose z, # u,. Since A = 0, &} (zo,u,) > 0, 112 < S(2,|Cy), zLv; <
S(zo|Dy), i =1,2,---  k and hypothesis (¢) holds, therefore,

k
Zdz‘l (xoa uo)/\i (fz(xo) + 1'521 61(91(370) —x ’Uz)) <0 (5.10)

As &%(z0,u,) > 0, and (u,, 2,v,w,y, \,p,q) is the feasible solution of (SFD),
therefore by feasibility condition (5.3), we get

m

1
2 (0, g Zyj( (o) + ulw;) + qu2<hj<uo>+uij>q) <0,

which by hypothesis (i¢) implies

F xo,uo,Zyj (o) + udwy) + V2(hj(uo) + ulwy)q] | < —p*d* (o, u,)
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As hypothesis (i7i) hold, the above inequality alongwith feasibility condition
(5.1) and sublinearity of F' imply

F @0, u0; zk: Ai [V (fi(uo) +udzi — Bilgi(uo) — UZ%))
i=1

+ VQ(fi(uo) + UOTZ - Bi(gi(uo) - UOTUi))P]

1\

— F | @o,uo; y 5 (V(hy(uo) +udwy) + V2 (hy (o) + uj wy)q)
j=1

g ﬁde(xoauo) 2 7ﬁ1d2(xo,uo)

which on applying hypothesis (ii) gives
k
D @i (@, uo)Nilfi(wo) + w4 2 — Bilgi(wo) — whvi)
i=1
— (filuo) +ulz = Bilga(uo) — ulwi))

4 507 (Fiwo) T2~ Bulgi(u) —ulvi) ) ) > 0

Using feasibility condition (5.2), we obtain
k
> @ @o wo)i (fillwo) + w8z = Bilgiwo) = wlvi)) >0
i=1

which is a contradiction to (5.10). Hence x, = u,. O
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