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SHADOWING PROPERTY FOR ADMM FLOWS

Yoon Mo Jung, Bomi Shin, and Sangwoon Yun

Abstract. There have been numerous studies on the characteristics of

the solutions of ordinary differential equations for optimization methods,

including gradient descent methods and alternating direction methods
of multipliers. To investigate computer simulation of ODE solutions, we

need to trace pseudo-orbits by real orbits and it is called shadowing prop-
erty in dynamics. In this paper, we demonstrate that the flow induced

by the alternating direction methods of multipliers (ADMM) for a C2

strongly convex objective function has the eventual shadowing property.
For the converse, we partially answer that convexity with the eventual

shadowing property guarantees a unique minimizer. In contrast, we show

that the flow generated by a second-order ODE, which is related to the
accelerated version of ADMM, does not have the eventual shadowing

property.

1. Introduction

Gradient-based optimization methods are often interpreted by ordinary dif-
ferential equations (ODEs), since ODEs can provide insights into the dynamics
of the method. However, computer simulations used to track the ODE’s solu-
tions do not yield an exact trajectory but a pseudo-trajectory. If the pseudo-
trajectory is close to the real trajectory, then we can confidently say that the
method is well represented by the ODE. In the literature of dynamical systems,
this phenomenon is called the shadowing property, which plays an important
role in the study of stability. Roughly speaking, it allows us to trace a set of
points which stay near a true orbit, even when perturbed by error or noise.
This phenomenon occurs in various applications, such as computer simulations
and physics experiments.
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We investigate an ODE in Rn that appears as a continuous limit of the
alternating direction methods of multipliers (ADMM) [6]. It is given as follows:

(1.1)

®
Ẋ = −λ∇V (X),

X(0) = x0,

where λ is an invertible n × n matrix and V : Rn → R represents a differen-
tiable objective function of the corresponding optimization problem. To specify
the induced flow, we call the ADMM flow for the objective function V and the
matrix λ. Owing to its significant applications in machine learning and related
topics, the dynamics of the flow induced by ADMM have been recently studied.
For instance, the direct method of Lyapunov was employed to study the sta-
bility properties of the flow [6]. Moreover, the nonsmooth ADMM cases have
also been analyzed, where the objective function is not differentiable [7, 13].

In what follows, we briefly describe how to obtain (1.1). First, we consider
the optimization problem

(1.2) min
x∈Rn

V (x) := g1(x) + g2(Ax)

under the following assumptions:

(H1) g1 : Rn → R and g2 : Rm → R are convex and smooth.
(H2) A ∈ Mm×n(R) has full column rank.

The alternating direction method of multipliers (ADMM) to solve (1.2) is
given as follows [4]:

xk+1 = argmin
x∈Rn

g1(x) +
ρ

2
∥Ax− zk + uk∥2,(1.3a)

zk+1 = argmin
z∈Rm

g2(z) +
ρ

2
∥Axk+1 − z + uk∥2,(1.3b)

uk+1 = uk +Axk+1 − zk+1,(1.3c)

where ρ > 0 is a penalty parameter. The detailed derivation of the ADMM
flow (1.1) is given in Appendix.

In this paper, we investigate the eventual shadowing property of the ADMM
flow generated by (1.1). In Section 2, we present our results on the ADMM
flow. In Section 3, we show that the ADMM flow for a C2 strongly convex ob-
jective function V and a positive definite matrix λ has the eventual shadowing
property. Furthermore, if the ADMM flow for a convex objective function V
and a positive definite matrix λ has the eventual shadowing property, then the
objective function has a unique minimizer. We note that related results can be
found in [3], [11] or [17], under C2 assumption on the objective functions. In
Section 4, we examine the dynamical system generated by a second order ODE
which can be used to model the accelerated version of ADMM. We prove that a
flow associated to this accelerated model does not have the eventual shadowing
property.
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2. Preliminary definitions and statements

In a metric space M , a flow of M is a continuous map φ : R×M → M such
that φ(0, x) = x and φ(s+t, x) = φ(s, φ(t, x)) for every x ∈ M and s, t ∈ R. As
usual, we denote the time t-map as φt : M → M , defined by φt(x) = φ(t, x).
We say that σ ∈ X is a fixed point of φ if φt(σ) = σ for every t ∈ R. A typical

example of flow is the solution φt(x) = X(t, x) of the ODE Ẋ = F (X), where
F : Rn → Rn is a C1 map. Thus, the equation (1.1) associated with ADMM
generates a flow. Note that there is a equivalence relation between the zeroes
of F and the fixed points of the flow, specifically,

(2.1) F (σ) = 0 ⇐⇒ σ is a fixed point of φ.

Now, we introduce the notions of shadowing we will study. Consider a contin-
uous map f : M → M , and let ∆ > 0, ϵ > 0. We consider the iteration fn for

n ∈ N ∪ {0} defined by f0 = idM (the identity of M) and fn = f ◦ n· · · ◦ f for
n ∈ N. A sequence (xn)n≥0 is called a ∆-pseudo-orbit if d(f(xn), xn+1) ≤ ∆ for
every n ≥ 0. The sequence is said to be ϵ-shadowed if there is an x ∈ M such
that d(fn(x), xn) ≤ ϵ for every n ≥ 0. The sequence is said to be eventually
ϵ-shadowed if there are x and N ∈ N such that d(fn(x), xn) ≤ ∆, ∀n ≥ N .

Definition 2.1. We say that a continuous map f : M → M of a metric
space M has the shadowing (resp. eventual shadowing) property [9] if for every
ϵ > 0 there is ∆ > 0 such that every ∆-pseudo orbit can be ϵ-shadowed (resp.
eventually ϵ-shadowed).

It is well known that the analysis of shadowing on flows becomes more
complicated than that for maps or homeomorphisms due to the presence of
the reparametrization of system (see [15] for details). The following definition
extends Definition 2.1 to flow. Note that the definition of shadowing for flows
is equivalent to the usual one if the flow has no fixed points (see Lemma 3.2 in
[15]).

Definition 2.2. A flow φ : R × M → M has the shadowing (resp. eventual
shadowing) property if its time t-map φt(x) = φ(t, x) has the shadowing (resp.
eventual shadowing) property for some t > 0.

For optimization problems, we remind a few definitions. We say that V is
convex if

V (sx+ (1− s)y) ≤ sV (x) + (1− s)V (y), ∀x, y ∈ Rn, ∀0 ≤ s ≤ 1

and strongly convex if V − σ∥ · ∥2 is convex for some σ > 0. If V is C2, then V
is strongly convex if and only if there is µ > 0 such that

∇2V (x) ⪰ µI.

Here, ∇2V (x) ⪰ µI means ∇2V (x)− µI is a positive semidefinite matrix.
Our first result is stated as follows.
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Theorem 2.3. The ADMM flow for a C2 strongly convex map V : Rn → R
and a positive definite n× n matrix λ has the eventual shadowing property.

We may question whether the converse is also true; specifically, the even-
tual shadowing property of the ADMM flow implies strong convexity of the
corresponding objective function. While we do not have a definitive answer to
this question, we have a partial result that shows the eventual shadowing prop-
erty guarantees a unique minimizer. This characteristic distinguishes strong
convexity from convexity.

Theorem 2.4. Let V : Rn → R be a convex function. If the ADMM flow for
V and a positive definite n× n matrix λ has the eventual shadowing property,
then V has a unique minimizer.

3. Proof of the theorems

Theorem 2.3 is a consequence of the following two lemmas. To delve into
them, we adopt a few notations and definitions. For a symmetric positive
semidefinite matrix Q, we denote its minimal eigenvalue by γ(Q). The Hessian
of a C2 map F : Rn → R at x ∈ Rn is denoted by ∇2F (x). The mininorm
m(L) of a linear operator L is defined by

m(L) = inf
∥x∥=1

∥L(x)∥.

Definition 3.1. A flow φ of a metric space M is point contracting if there are
x∗ ∈ M and K, ρ > 0 such that

d(φt(x), x∗) ≤ Ke−ρtd(x, x∗), ∀x ∈ M, t ≥ 0.

In the literature, a flow φ of a metric space X is said to be contracting when
there is ρ > 0 such that d(φt(x), φt(y)) ≤ e−ρtd(x, y) for every t ≥ 0, x, y ∈ X
(see [8, 10]). It can be proved that all such flows have a singular point x∗ ∈ X
(i.e., φt(x∗) = x∗ for all t ∈ R) if X is complete. Hence, every contracting flow
of a complete metric space is point contracting.

We also utilize the Gronwall inequality and state it below for the reader’s
convenience (see [18]).

Gronwall inequality: Let I denote an interval of the form [a,∞) or [a, b],
with a < b. Let β and u be real-valued continuous functions defined on I. If u
is differentiable in the interior Io of I and satisfies the differential inequality

du

dt
(t) ≤ β(t)u(t), ∀t ∈ Io,

then
u(t) ≤ e

∫ t
a
β(s)dsu(a), ∀t ∈ I.

With these notations and facts, we have our first lemma.

Lemma 3.2. Let V : Rn → R be C2 strongly convex, and let λ be a positive
definite matrix. Then, the ADMM flow for V and λ is contracting.
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Proof. Since λ is positive definite and thus invertible, λ = A⊤A for some
invertible matrix A (cf. p. 2 in [2]). Since V is strongly convex, V has a unique
minimizer X∗.

Now, let X be a solution of (1.1). Then,

1

2

d

dt
∥(A⊤)−1(X −X∗)∥2 = ⟨(A⊤)−1Ẋ, (A⊤)−1(X −X∗)⟩

= ⟨A−1(A⊤)−1Ẋ,X −X∗⟩

= ⟨(A⊤A)−1Ẋ,X −X∗⟩

= ⟨λ−1Ẋ,X −X∗⟩
= −⟨∇V (X), X −X∗⟩.

In summary,

(3.1)
1

2

d

dt
∥(A⊤)−1(X∗ −X)∥2 = ⟨∇V (X), X∗ −X⟩.

On the other hand, by Taylor expansion, one has

V (X∗)− V (X) = ⟨∇V (X), X∗ −X⟩+ 1

2
(X∗ −X)⊤∇2V (U)(X∗ −X),

where U = sX∗ + (1− s)X for some s ∈ [0, 1]. Then,

−⟨∇V (X), X∗ −X⟩ = V (X)− V (X∗) +
1

2
(X∗ −X)⊤∇2V (U)(X∗ −X)

≥ 1

2
(X∗ −X)⊤∇2V (U)(X∗ −X)

≥ µ

2
∥X∗ −X∥2

≥ µ

2
(m(A⊤))2∥(A⊤)−1(X∗ −X)∥2

= ρ∥(A⊤)−1(X∗ −X)∥2.

The second inequality comes from the strong convexity with the positive scalar
µ ≤ infU∈Rn γ(∇V (U)) and ρ := µ

2 (m(A⊤))2. Hence,

(3.2) ⟨∇V (X), X∗ −X⟩ ≤ −ρ∥(A⊤)−1(X∗ −X)∥2.

By combining (3.1) with (3.2), we obtain

d

dt
∥(A⊤)−1(X∗ −X)∥2 ≤ −2ρ∥(A⊤)−1(X∗ −X)∥2.

By letting I = [0,∞), u(t) = ∥(A⊤)−1(X∗ − X)∥2, β(t) = −2ρ for all t, we
rewrite

u′(t) ≤ β(t)u(t), ∀t ∈ Io.

By applying Gronwall inequality,

∥(A⊤)−1(X∗ −X)∥ ≤ e−2ρt∥(A⊤)−1(X(0)−X∗)∥, ∀t ≥ 0.
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Therefore,

∥X −X∗∥ ≤ Ke−2ρt∥X(0)−X∗∥, ∀t ≥ 0,

where

K = (m((A⊤)−1))−1∥(A⊤)−1∥.
From the definition of the ADMM flow, we conclude the lemma. □

A shadowing lemma for contracting flows was obtained in [8, 10]. Since the
contracting flow is a special case of the point contracting flow, the following
lemma is an extended result.

Lemma 3.3. Every point contracting flow of a metric space has the eventual
shadowing property.

Proof. Let φ be a point contracting flow of a metric space M , and x∗ ∈ M ,
K, ρ > 0 are from Definition 3.1. Fix T > 0 such that 0 < a < 1 where
a = Ke−2ρT and denote f = φT . Then,

(3.3) d(f(x), x∗) ≤ ad(x, x∗), ∀x ∈ M.

Replacing x = x∗ we get f(x∗) = x∗.
Fix ϵ > 0 and δ > 0 such that

(3.4) δ

∞∑
i=0

ai <
ϵ

2
.

Let (xn)n≥0 be a δ-pseudo-orbit of f . Fix N ∈ N such that

(3.5) and(x0, x∗) <
ϵ

2
, ∀n ≥ N.

By using (3.3), we have that

d(xn, x∗) ≤ d(f(xn−1), x∗) + d(f(xn−1), xn) ≤ ad(xn−1, x∗) + δ

and hence

d(xn, x∗) ≤ and(x0, x∗) + δ

n−1∑
i=0

ai, ∀n ≥ 1.

Since f(x∗) = x∗, f
n(x∗) = x∗ for n ∈ N, (3.4) and (3.5) imply

d(fn(x∗), xn) <
ϵ

2
+ δ

∞∑
i=0

ai <
ϵ

2
+

ϵ

2
= ϵ, ∀n ≥ N.

This completes the proof. □

Proof of Theorem 2.3. Let V : Rn → R be a C2 strictly convex map and λ
be a positive definite n × n matrix. Then, the ADMM flow for V and λ is
point contracting by Lemma 3.2 and so has the eventual shadowing property
by Lemma 3.3. □
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Next, we prove Theorem 2.4. In order to do it, we provide some technical
lemmas. First, let us define a technical set. Given a map of a metric space
f : M → M , we define the nonwandering set Ω(f) of f by

{x ∈ M : x = lim
n→∞

fkn(xn) for a sequence xn ∈ M with xn → x and kn ∈ N}.

Now, we have the following lemma for the nonwandering set for a flow.

Lemma 3.4. Let V : Rn → R be C2 convex and λ be a positive definite n× n
matrix. Then, Ω(φT ) = argminX∈Rn V (X) for every T > 0, where φ is the
ADMM flow generated by V and λ.

Proof. Since V is C2, the equation (1.1) generates a flow φ and we consider
the time-T map φT , the nonwandering set Ω(φT ) of φT . On the other hand,
the convexity of V guarantees

arg min
X∈Rn

V (X) = {X ∈ Rn : ∇V (X) = 0}
(2.1)
⊂ Ω(φT ).

It remains to prove that ∇V (x0) = 0 for every x0 ∈ Ω(φT ).
Fix x0 ∈ Ω(φT ). Then, there are sequences xi ∈ Rn and ki ∈ N such that

xi → x0 and Xi(kiT ) → x0 as n → ∞,

where Xi is the solution of (1.1) with the initial value xi. It follows that

V (Xi(0)) → V (x0) and V (Xi(kiT )) → V (x0)

and also
|V (Xi(0))− V (Xi(kiT ))| → 0 as i → ∞.

Then, by the Rolle’s theorem, there is a sequence ti ∈ [0, kiT ] such that

d(V ◦Xi)

dt
(ti) = 0 for all sufficiently large i.

Since

d(V ◦Xi)

dt
(ti) =

≠
∇V (Xi(ti)),

dXi

dt
(ti)

∑
= ⟨∇V (Xi(ti)), λ∇V (Xi(ti))⟩,

we have
⟨∇V (Xi(ti)), λ∇V (Xi(ti))⟩ = 0.

In addition, from the positive definiteness of λ, we conclude that

∇V (Xi(ti)) = 0.

Then, Xi(t) is a fixed point for all t ∈ R and so Xi(t) = xi for all t ∈ R.
In particular, xi = Xi(ti) is a zero of ∇V (i.e., ∇V (xi) = 0) for all suffi-
ciently large i. Since x0 = limi→∞ xi, the continuity of ∇V implies ∇V (x0) =
limi→∞ ∇V (xi) = 0. This completes the proof. □

We introduce the following auxiliary definition. Given δ > 0 and f : X → X,
a δ-chain is a finite sequence {x0, . . . , xk} such that d(f(xi−1), xi) ≤ δ for
1 ≤ i ≤ k. We say that the chain is from x to y if x0 = x and xk = y.
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Definition 3.5. We say that a map f : M → M of a metric space M has the
finite shadowing property, if for every ϵ > 0, there is δ > 0 such that every
δ-chain {x0, . . . , xk} has x ∈ M satisfying d(f i(x), xi) ≤ ϵ for 0 ≤ i ≤ k.

The following lemma is an extended version of Theorem 2.6 in [5] for a
noncompact metric space.

Lemma 3.6. If f : M → M is a homeomorphism with the eventual shadowing
property of metric space, then f |Ω(f) : Ω(f) → Ω(f) has the (finite) shadowing
property.

Proof. Given x, y ∈ M and δ > 0, we write x ∼δ y if there is a δ-chain from x
to y. We write x ∼ y if x ∼δ y for every δ > 0. Define the chain recurrent set
of f as

CR(f) = {x ∈ M : x ∼ x}.
This set is closed and invariant, i.e., f(CR(f)) = CR(f). We claim that
Ω(f) = CR(f).

Note that Ω(f) ⊆ CR(f) is clear, and the equality Ω(f) = CR(f) does not
hold in general [1]. So, it suffices to prove CR(f) ⊂ Ω(f). Take x ∈ CR(f)
and ϵ > 0. Let δ > 0 be given by the eventual shadowing property for this ϵ.
Since x ∼ x, there is a sequence {x0 = x, . . . , xk = x} with d(f(xi−1), xi) ≤ δ
for 1 ≤ i ≤ k. Defining

xn(k+1)+i = xi for 0 ≤ i ≤ k − 1 and n ∈ N,

we obtain a sequence (xr)r≥0 with d(f(xr), xr+1) ≤ δ for every r ≥ 0. Then,
by the eventual shadowing property, there are y ∈ M and N ∈ N such that
d(f l(y), xl) ≤ ϵ for every l ≥ N . Taking z = fNk(y) we get d(z, x) =
d(fNk(y), x) = d(fNk(y), xNk) ≤ ϵ and d(fNk(z), x) = d(f2Nk(y), x2Nk) ≤ ϵ.
Since ϵ is arbitrary, x ∈ Ω(f). This proves the claim.

Now, we back to the proof of the lemma. Fix ϵ > 0. Let δ > 0 be given by the
eventual shadowing property of f for this ϵ. Take a δ-chain {x0, x1, . . . , xk} ⊂
Ω(f). We must find x ∈ Ω(f) such that d(f i(x), xi) ≤ ϵ for every 0 ≤ i ≤ k.
For this, we proceed as follows.

First note that ∼δ is an equivalence relation in CR(f) and then in Ω(f) by
the claim. So, we can write

Ω(f) =
⋃
α∈Λ

Bα,

where {Bα : α ∈ Λ} (for some index set Λ) is the collection of equivalence
classes of ∼δ restricted to Ω(f). More precisely, Bα = {y ∈ Ω(f) : x ∼δ y}
for every α ∈ Λ and x ∈ Bα. Choose ξ ∈ Λ such that x0 ∈ Bξ. It follows
from the definition of ∼δ that xi ∈ Bξ for every 0 ≤ i ≤ k. In particular,
x0 ∼δ xk, so we can complete the sequence {x0, x1, . . . , xk} with another δ-
chain {xk, xk+1, . . . , xk+l = x0}. This results in a sequence {x0, x1, . . . , xk+l}
and we can generate a δ-pseudo-orbit (xr)r≥0 by setting xn(k+l)+s = xs for
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n ≥ 0, 0 ≤ s ≤ k + l− 1. Then, by the eventual shadowing property, there are
x ∈ M and N ∈ N such that

d(fr(x), xr) ≤ ϵ, ∀r ≥ N.

Fix n ≥ N and let z = fn(k+l)(y). Then, n(k + l) + s ≥ N for every
0 ≤ s ≤ k, so

d(fs(z), xs) = d(fn(k+l)+s(y), xn(k+l)+s) ≤ ϵ, ∀0 ≤ s ≤ k.

Hence the initial finite sequence {x1, . . . , xk} can be ϵ-shadowed. Therefore,
f |Ω(f) has the finite shadowing property. □

Proof of Theorem 2.4. Let V : Rn → R be a convex function. Suppose that
the ADMM flow φ for V and a positive definite n × n real matrix λ has the
eventual shadowing property. By definition, there is T > 0 such that f = φT

has the eventual shadowing property. By Lemma 3.4, one has that Ω(f) =
argmin X∈RnV (X). It follows that Ω(f) consists of the zeroes of ∇V and hence
f |Ω(f) is the identity of Ω(f). Since f has the eventual shadowing property,
f |Ω(f) has the finite shadowing property by Lemma 3.6. Since V is convex,
argmin X∈RnV (X) = Ω(f) is convex (hence connected). Combining the fact
that f |Ω(f) is the identity of Ω(f), the finite shadowing property of f |Ω(f) and
the connectedness of Ω(f), we conclude that Ω(f) reduces to a single point by
Theorem 2.3.2 in [1]. Therefore V has a unique minimizer. □

4. Nonshadowing for a flow by a second order ODE

In this section, we study the shadowing property for a flow of the dynamical
system generated by a second order ODE. The second order ODE can be used
to model the accelerated ADMM method [6]:

(A⊤A)
(
Ẍ +

r

t
Ẋ
)
+∇V (X) = 0,

where A is an invertible n× n matrix, V : Rn → R is a differentiable objective
function and r ∈ R. If A = I, then the above ODE corresponds to Nesterov’s
accelerated gradient method [16].

By letting Y = Ẋ, we reformulate it as the following system of first-order
ODEs: ®

Ẋ = Y,

Ẏ = −(A⊤A)−1∇V (X)− r
tY.

However, this equation is nonautonomous if r ̸= 0. In such a case, the equa-
tion generates the evolution process [14]. Since our primary interest is on flows
rather than processes, we henceforth assume that r = 0. Under this assump-
tion, we consider the autonomous ODE in R2n,

(4.1)

®
Ẋ = Y,

Ẏ = −λ∇V (X),
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with a invertible n×n matrix λ. This equation generates a flow φ in R2n that
depends on both the objective function V and the matrix λ. On the contrary,
we have the following opposite result for this flow.

Theorem 4.1. The flow φ generated by (4.1) with a C2 strongly convex func-
tion V : Rn → R and a positive definite n × n matrix λ does not have the
eventual shadowing property.

Proof. On the contrary, we assume that φ has the eventual shadowing property.
As before, since λ is positive definite, we can write λ = A⊤A for some invertible
matrix A. We define E : R2n → R by

E(X,Y ) = V (X) +
1

2
∥(A−1)⊤(Y )∥2 for (X,Y ) ∈ Rn × Rn = R2n.

Similar to [6], we take the time derivative of E and evaluate at a solution
(X,Y ) of (4.1):

dE

dt
(t) = ⟨∇XE, Ẋ⟩+ ⟨∇Y E, Ẏ ⟩

= ⟨∇V (X), Y ⟩ − ⟨A−1(A−1)⊤Y, (A⊤A)∇V (X)⟩

= ⟨∇V (X), Y ⟩ − ⟨Y, (A−1)(A−1)⊤(A⊤A)∇V (X)⟩

= ⟨∇V (X), Y ⟩ − ⟨Y, (A⊤A)−1(A⊤A)∇V (X)⟩
= ⟨∇V (X), Y ⟩ − ⟨Y,∇V (X)⟩
= 0.

Thus, E is constant along the orbits of the flow φ. Moreover, since V is
strongly convex, V has a unique minimizer X∗. It follows that E has a unique
critical point at Z∗ = (X∗, 0) and it is a minimizer with the minimum value
E(Z∗) = V (X∗).

Since the level sets of E are concentric spheres around Z∗ = (X∗, 0), these
sets are compact and do not contain Z∗. So, we can take a positive number

(4.2) ∆ =
1

4
dist(Z∗, E−1(V (X∗) + 1)).

Then, by choosing 0 < ϵ < ∆ such that

(4.3) d(Z∗, Z) < ϵ =⇒ diam(E−1(E(Z))) < ∆,

we can select δ for the eventual shadowing property of the time 1-map φ1 with
respect to this ϵ. By jumping along the level sets of E from Z∗ to E−1(V (X∗)+
1), we can construct a δ-pseudo-orbit {Zk}k≥0 such that Zi = Z∗ for infinitely
many i in N, and Zj ∈ E−1(V (X∗)+1) for infinitely many j in N. This process
is illustrated in Figure 1. The eventual shadowing property implies that there
is Z ∈ R2n such that

d(φi(Z), Zi) < ϵ for all sufficiently large i.
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E−1(E(Z*))
Zk

φ1(Zk)

Zk+1

Zk+2
Zk+3

φ1(Zk+1)
φ1(Zk+2)

E−1(V(X*) + 1)
Z0 = Z*

δ

δ

δ

Figure 1. A δ-pseudo-orbit of φ1 by jumping the levels sets

In particular, there are time i-map φi and time j-map φj with i < j ∈ N such
that

d(φi(Z), Z∗) < ϵ and d(φj(Z), Zj) < ϵ with Zj ∈ E−1(V (X∗) + 1).

Since E is constant along the orbits of φ, one has φj(Z) ∈ E−1(E(φi(Z))).
Finally,

d(Z∗, Zj) ≤ d(Z∗, φi(Z)) + d(φi(Z), φj(Z)) + d(φj(Z), Zj)

≤ 2ϵ+ diam(E−1(E(φi(Z))))

(4.3)
< 2∆ +∆

= 3∆
(4.2)
<

3

4
dist(Z∗, E

−1(V (X∗) + 1))

< dist(Z∗, E
−1(V (X∗) + 1)).

It contradicts to Zj ∈ E−1(V (X∗) + 1) and we draw our conclusion. □

5. Conclusion

In this study, we have analyzed the characteristics of solutions for the ordinary
differential equations for the alternating direction method of multipliers. Our
analysis is based on the shadowing property, which is a tool used in dynam-
ical systems to investigate computer simulations of ODE solutions and trace
pseudo-orbits by real orbits. We have showed that the flow induced by the
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ADMM for a C2 strongly convex objective function has the eventual shad-
owing property. As for the converse, we provided a partial answer that the
convexity with the eventual shadowing property implies a unique minimizer.

However, we have also found that the flow generated by a second-order
ODE, which is related to the accelerated version of ADMM, does not possess
the eventual shadowing property. Investigating the shadowing properties for
the general accelerated optimization method will require a theory of evolution
processes [12,19], as these properties have been little studied. This may be the
focus of our future work.

6. Appendix

In this appendix, we derive the ADMM flow of the form (1.1) for the com-
pletion. From (1.3a) and (1.3b), we have

0 = ∇g1(x
k+1) + ρA⊤(Axk+1 − zk + uk),(6.1a)

0 = ∇g2(z
k+1)− ρ(Axk+1 − zk+1 + uk).(6.1b)

Multiplying (6.1b) by A⊤ and adding it to (6.1a), we get

(6.2) 0 = ∇g1(x
k+1) +A⊤∇g2(z

k+1) + ρA⊤(zk+1 − zk).

Let xk = X(kϵ), zk = Z(kϵ) and uk = U(kϵ) be discretizations for the
continuum trajectories X(t), Z(t) and U(t) defined on t ≥ 0. By taking t = kϵ,
we get that

(6.3)

®
xk = X(t),

xk+1 = X(t+ ϵ),

®
zk = Z(t),

zk+1 = Z(t+ ϵ),

®
uk = U(t),

uk+1 = U(t+ ϵ).

Plugging (6.3) in (1.3c) yields that

U(t+ ϵ)− U(t) = AX(t+ ϵ)− Z(t+ ϵ).

By letting ϵ → 0 and the continuity of X(·), Z(·), and U(·), we get

(6.4) Z(t) = AX(t).

Replacing ρ = ϵ−1 and putting (6.3) and (6.4) in (6.2) imply that

(6.5) 0 = ∇g1(X(t+ ϵ)) +A⊤∇g2(AX(t+ ϵ)) +A⊤A

Å
X(t+ ϵ)−X(t)

ϵ

ã
.

Taking the limit as ϵ → 0 in the above equation yields that

0 = ∇g1(X(t)) +A⊤∇g2(AX(t)) +A⊤AẊ(t)

and so

Ẋ(t) = −(A⊤A)−1
(
∇g1(X(t)) +A⊤∇g2(AX(t))

)
.

Therefore, we obtain (1.1) by taking V (x) = g1(x)+g2(Ax) and λ = (A⊤A)−1.



SHADOWING PROPERTY FOR ADMM FLOWS 407

References

[1] N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North-Holland Math-

ematical Library, 52, North-Holland, Amsterdam, 1994.

[2] R. Bhatia, Positive Definite Matrices, Princeton Series in Applied Math., 2007.
[3] A. Bielecki and J. Ombach, Shadowing property in analysis of neural networks dynamics,

J. Comput. Appl. Math. 164/165 (2004), 107–115. https://doi.org/10.1016/S0377-

0427(03)00486-2

[4] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and

statistical learning via the alternating direction method of multipliers, Foundations and

Trends in Machine Learning 3 (2011), 1–122.
[5] M. H. Dong, K. Lee, and N.-T. Nguyen, Expanding measures for homeomorphisms

with eventually shadowing property, J. Korean Math. Soc. 57 (2020), no. 4, 935–955.

https://doi.org/10.4134/JKMS.j190453

[6] G. França, D. P. Robinson, and R. E. Vidal, ADMM and accelerated ADMM as contin-

uous dynamical system, Proceedings of the 35th International Conference on Machine
Learning 80 (2018), 1559–1567.

[7] G. França, D. P. Robinson, and R. E. Vidal, A nonsmooth dynamical systems perspective

on accelerated extensions of ADMM, IEEE Trans. Automat. Control 68 (2023), no. 5,
2966–2978. https://doi.org/10.1109/tac.2023.3238857

[8] M. Garg and R. Das, Continuous semi-flows with the almost average shadowing property,

Chaos Solitons Fractals 105 (2017), 1–7. https://doi.org/10.1016/j.chaos.2017.10.
005

[9] C. Good and J. Meddaugh, Orbital shadowing, internal chain transitivity and ω-limit

sets, Ergodic Theory Dynam. Systems 38 (2018), no. 1, 143–154. https://doi.org/10.
1017/etds.2016.30

[10] L. F. He, Z. H. Wang, and H. Li, Continuous semiflows with the shadowing property,

Acta Math. Appl. Sinica 19 (1996), no. 2, 297–303.
[11] A. Jung, A fixed-point of view on gradient methods for big data, Frontiers in Applied

Mathematics and Statistics 3 (2017), 18.
[12] W. Jung, K. Lee, and C. A. Morales, Dynamics of G-processes, Stoch. Dyn. 20 (2020),

no. 1, 2050037, 30 pp. https://doi.org/10.1142/S0219493720500379

[13] Y. M. Jung, B. Shin, and S. Yun, Global attractor and limit points for nonsmooth
ADMM, Appl. Math. Lett. 128 (2022), Paper No. 107890, 8 pp. https://doi.org/10.

1016/j.aml.2021.107890

[14] P. E. Kloeden and M. Rasmussen, Nonautonomous dynamical systems, Mathematical
Surveys and Monographs, 176, Amer. Math. Soc., Providence, RI, 2011. https://doi.

org/10.1090/surv/176

[15] M. Komuro, One-parameter flows with the pseudo-orbit tracing property, Monatsh.
Math. 98 (1984), no. 3, 219–253. https://doi.org/10.1007/BF01507750

[16] Y. Nesterov, A method for solving the convex programming problem with convergence

rate O(1/k2), Dokl. Akad. Nauk SSSR 269 (1983), no. 3, 543–547.
[17] A. Orbieto and A. Lucchi, Shadowing properties of optimization algorithms, 33rd Con-

ference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

[18] B. G. Pachpatte, Inequalities for differential and integral equations, Mathematics in
Science and Engineering, 197, Academic Press, Inc., San Diego, CA, 1998.

[19] R. Vasisht and R. Das, Specification and shadowing properties for non-autonomous
systems, J. Dyn. Control Syst. 28 (2022), no. 3, 481–492. https://doi.org/10.1007/

s10883-021-09535-4

https://doi.org/10.1016/S0377-0427(03)00486-2
https://doi.org/10.1016/S0377-0427(03)00486-2
https://doi.org/10.4134/JKMS.j190453
https://doi.org/10.1109/tac.2023.3238857
https://doi.org/10.1016/j.chaos.2017.10.005
https://doi.org/10.1016/j.chaos.2017.10.005
https://doi.org/10.1017/etds.2016.30
https://doi.org/10.1017/etds.2016.30
https://doi.org/10.1142/S0219493720500379
https://doi.org/10.1016/j.aml.2021.107890
https://doi.org/10.1016/j.aml.2021.107890
https://doi.org/10.1090/surv/176
https://doi.org/10.1090/surv/176
https://doi.org/10.1007/BF01507750
https://doi.org/10.1007/s10883-021-09535-4
https://doi.org/10.1007/s10883-021-09535-4


408 Y. M. JUNG, B. SHIN, AND S. YUN

Yoon Mo Jung

Department of Mathematics

Sungkyunkwan University
Suwon-si 16419, Korea

Email address: yoonmojung@skku.edu

Bomi Shin

Institute of Basic Science

Sungkyunkwan University
Suwon-si 16419, Korea

Email address: bmshin@skku.edu

Sangwoon Yun

Department of Mathematics Education

Sungkyunkwan University
Seoul 03063, Korea

Email address: yswmathedu@skku.edu


