• 제목/요약/키워드: second Gaussian curvature

검색결과 14건 처리시간 0.023초

TUBES OF WEINGARTEN TYPES IN A EUCLIDEAN 3-SPACE

  • Ro, Jin Suk;Yoon, Dae Won
    • 충청수학회지
    • /
    • 제22권3호
    • /
    • pp.359-366
    • /
    • 2009
  • In this paper, we study a tube in a Euclidean 3-space satisfying some equation in terms of the Gaussian curvature, the mean curvature and the second Gaussian curvature.

  • PDF

ON SOME GEOMETRIC PROPERTIES OF QUADRIC SURFACES IN EUCLIDEAN SPACE

  • Ali, Ahmad T.;Aziz, H.S. Abdel;Sorour, Adel H.
    • 호남수학학술지
    • /
    • 제38권3호
    • /
    • pp.593-611
    • /
    • 2016
  • This paper is concerned with the classifications of quadric surfaces of first and second kinds in Euclidean 3-space satisfying the Jacobi condition with respect to their curvatures, the Gaussian curvature K, the mean curvature H, second mean curvature $H_{II}$ and second Gaussian curvature $K_{II}$. Also, we study the zero and non-zero constant curvatures of these surfaces. Furthermore, we investigated the (A, B)-Weingarten, (A, B)-linear Weingarten as well as some special ($C^2$, K) and $(C^2,\;K{\sqrt{K}})$-nonlinear Weingarten quadric surfaces in $E^3$, where $A{\neq}B$, A, $B{\in}{K,H,H_{II},K_{II}}$ and $C{\in}{H,H_{II},K_{II}}$. Finally, some important new lemmas are presented.

SOME CHARACTERIZATIONS OF CANAL SURFACES

  • Kim, Young Ho;Liu, Huili;Qian, Jinhua
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.461-477
    • /
    • 2016
  • This work considers a particular type of swept surface named canal surfaces in Euclidean 3-space. For such a kind of surfaces, some interesting and important relations about the Gaussian curvature, the mean curvature and the second Gaussian curvature are found. Based on these relations, some canal surfaces are characterized.

Classification of Ruled Surfaces with Non-degenerate Second Fundamental Forms in Lorentz-Minkowski 3-Spaces

  • Jung, Sunmi;Kim, Young Ho;Yoon, Dae Won
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.579-593
    • /
    • 2007
  • In this paper, we study some properties of ruled surfaces in a three-dimensional Lorentz-Minkowski space related to their Gaussian curvature, the second Gaussian curvature and the mean curvature. Furthermore, we examine the ruled surfaces in a three-dimensional Lorentz-Minkowski space satisfying the Jacobi condition formed with those curvatures, which are called the II-W and the II-G ruled surfaces and give a classification of such ruled surfaces in a three-dimensional Lorentz-Minkowski space.

  • PDF

TIMELIKE TUBULAR SURFACES OF WEINGARTEN TYPES AND LINEAR WEINGARTEN TYPES IN MINKOWSKI 3-SPACE

  • Chenghong He;He-jun Sun
    • 대한수학회보
    • /
    • 제61권2호
    • /
    • pp.401-419
    • /
    • 2024
  • Let K, H, KII and HII be the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature of a timelike tubular surface Tγ(α) with the radius γ along a timelike curve α(s) in Minkowski 3-space E31. We prove that Tγ(α) must be a (K, H)-Weingarten surface and a (K, H)-linear Weingarten surface. We also show that Tγ(α) is (X, Y)-Weingarten type if and only if its central curve is a circle or a helix, where (X, Y) ∈ {(K, KII), (K, HII), (H, KII), (H, HII), (KII , HII)}. Furthermore, we prove that there exist no timelike tubular surfaces of (X, Y)-linear Weingarten type, (X, Y, Z)-linear Weingarten type and (K, H, KII, HII)-linear Weingarten type along a timelike curve in E31, where (X, Y, Z) ∈ {(K, H, KII), (K, H, HII), (K, KII, HII), (H, KII, HII)}.

On Ruled Surfaces with a Sannia Frame in Euclidean 3-space

  • Senyurt, Suleyman;Eren, Kemal
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.509-531
    • /
    • 2022
  • In this paper we define a new family of ruled surfaces using an othonormal Sannia frame defined on a base consisting of the striction curve of the tangent, the principal normal, the binormal and the Darboux ruled surface. We examine characterizations of these surfaces by first and second fundamental forms, and mean and Gaussian curvatures. Based on these characterizations, we provide conditions under which these ruled surfaces are developable and minimal. Finally, we present some examples and pictures of each of the corresponding ruled surfaces.

ON GENERALIZED SPHERICAL SURFACES IN EUCLIDEAN SPACES

  • Bayram, Bengu;Arslan, Kadri;Bulca, Betul
    • 호남수학학술지
    • /
    • 제39권3호
    • /
    • pp.363-377
    • /
    • 2017
  • In the present study we consider the generalized rotational surfaces in Euclidean spaces. Firstly, we consider generalized spherical curves in Euclidean (n + 1)-space ${\mathbb{E}}^{n+1}$. Further, we introduce some kind of generalized spherical surfaces in Euclidean spaces ${\mathbb{E}}^3$ and ${\mathbb{E}}^4$ respectively. We have shown that the generalized spherical surfaces of first kind in ${\mathbb{E}}^4$ are known as rotational surfaces, and the second kind generalized spherical surfaces are known as meridian surfaces in ${\mathbb{E}}^4$. We have also calculated the Gaussian, normal and mean curvatures of these kind of surfaces. Finally, we give some examples.

재귀적 수치 계산법을 이용한 등가 렌즈의 곡률 계산 (Curvature Radius of Equivalent Lens Obtained by Recursive Numerical Solving of Gaussian Equations)

  • 이규행
    • 한국광학회지
    • /
    • 제33권6호
    • /
    • pp.275-286
    • /
    • 2022
  • 광학설계 과정의 첫 단계에서 근축 광선이 만족하는 Gauss 방정식에 대한 해를 구할 수 있는 재귀적 수치 계산법을 도출하였다. 설계 사양으로 렌즈 모듈의 굴절력, 렌즈 제1 주요면으로의 입사각과 제2 주요면으로부터의 출사각이 주어지면 렌즈의 주요면 사이의 거리를 선택한 후, 재귀적 수치 계산법을 적용하여 렌즈의 두께, 렌즈 앞면의 곡률 반경과 뒷면의 곡률 반경을 구할 수 있다. 즉, 설계 사양을 만족하는 두께가 다른 여러 등가렌즈를 얻을 수 있다. 모듈이 2개 이상의 렌즈로 구성되는 경우에도 렌즈의 개수를 하나씩 증가하면서 렌즈의 주요면 사이의 거리를 설계 사양에 맞추어 선택한 후 각 렌즈의 두께와 곡률 반경을 결정할 수 있다.