DOI QR코드

DOI QR Code

TIMELIKE TUBULAR SURFACES OF WEINGARTEN TYPES AND LINEAR WEINGARTEN TYPES IN MINKOWSKI 3-SPACE

  • Chenghong He (School of Mathematics and Statistics Nanjing University of Science and Technology) ;
  • He-jun Sun (School of Mathematics and Statistics Nanjing University of Science and Technology)
  • Received : 2023.03.05
  • Accepted : 2023.06.29
  • Published : 2024.03.31

Abstract

Let K, H, KII and HII be the Gaussian curvature, the mean curvature, the second Gaussian curvature and the second mean curvature of a timelike tubular surface Tγ(α) with the radius γ along a timelike curve α(s) in Minkowski 3-space E31. We prove that Tγ(α) must be a (K, H)-Weingarten surface and a (K, H)-linear Weingarten surface. We also show that Tγ(α) is (X, Y)-Weingarten type if and only if its central curve is a circle or a helix, where (X, Y) ∈ {(K, KII), (K, HII), (H, KII), (H, HII), (KII , HII)}. Furthermore, we prove that there exist no timelike tubular surfaces of (X, Y)-linear Weingarten type, (X, Y, Z)-linear Weingarten type and (K, H, KII, HII)-linear Weingarten type along a timelike curve in E31, where (X, Y, Z) ∈ {(K, H, KII), (K, H, HII), (K, KII, HII), (H, KII, HII)}.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 11001130) and the Fundamental Research Funds for the Central Universities (Grant No. 30917011335).

References

  1. B. Brunt and K. Grant, Potential applications of Weingarten surfaces in CAGD. Part I: Weingarten surfaces and surface shape investigation, Comput. Aided Geom. Design 13 (1996), no. 6, 569-582. https://doi.org/10.1016/0167-8396(95)00046-1 
  2. S. S. Chern, Some new characterizations of the Euclidean sphere, Duke Math. J. 12 (1945), 279-290. http://projecteuclid.org/euclid.dmj/1077473104  1077473104
  3. F. Dillen and W. Kuhnel, Ruled Weingarten surfaces in Minkowski 3-space, Manuscripta Math. 98 (1999), no. 3, 307-320. https://doi.org/10.1007/s002290050142 
  4. F. Dillen and W. Sodsiri, Ruled surfaces of Weingarten type in Minkowski 3-space, J. Geom. 83 (2005), no. 1-2, 10-21. https://doi.org/10.1007/s00022-005-0002-4 
  5. X. Fu, S. D. Jung, J. Qian, and M. Su, Geometric characterizations of canal surfaces in Minkowski 3-space 𝕀, Bull. Korean Math. Soc. 56 (2019), no. 4, 867-883. https://doi.org/10.4134/BKMS.b180643 
  6. J. A. Galvez, A. Martinez, and F. Milan, Linear Weingarten surfaces in ℝ3, Monatsh. Math. 138 (2003), no. 2, 133-144. https://doi.org/10.1007/s00605-002-0510-3 
  7. H. Hopf, Uber Flachen mit einer Relation zwischen den Hauptkrummungen, Math. Nachr. 4 (1951), 232-249. https://doi.org/10.1002/mana.3210040122 
  8. M. K. Karacan, D. W. Yoon, and Y. Tun,cer, Tubular surfaces of Weingarten types in Minkowski 3-space, Gen. Math. Notes. 22 (2014), no. 1, 44-56. 
  9. Y. H. Kim and D. W. Yoon, Classification of ruled surfaces in Minkowski 3-spaces, J. Geom. Phys. 49 (2004), no. 1, 89-100. https://doi.org/10.1016/S0393-0440(03)00084-6 
  10. W. Kuhnel and M. Steller, On closed Weingarten surfaces, Monatsh. Math. 146 (2005), no. 2, 113-126. https://doi.org/10.1007/s00605-005-0313-4 
  11. R. Lopez, On linear Weingarten surfaces, Internat. J. Math. 19 (2008), no. 4, 439-448. https://doi.org/10.1142/S0129167X08004728 
  12. R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2014), no. 1, 44-107.  https://doi.org/10.36890/iejg.594497
  13. R. Lopez and A. Pampano, Classification of rotational surfaces in Euclidean space satisfying a linear relation between their principal curvatures, Math. Nachr. 293 (2020), no. 4, 735-753. https://doi.org/10.1002/mana.201800235 
  14. M. G. Puopolo and J. D. Jacob, Velocity control of a cylindrical rolling robot by shape changing, Adv. Robotics. 30 (2016), no. 23, 1484-1494.  https://doi.org/10.1080/01691864.2016.1246262
  15. J. H. Qian, M. F. Su, X. S. Fu, and S. D. Jung, Geometric characterizations of canal surfaces in Minkowski 3-space II, Math. 7 (2019), no. 8, 703. 
  16. J. S. Ro and D. W. Yoon, Tubes of weingarten types in a Euclidean 3-space, J. Chungcheong Math. Soc. 22 (2009), no. 3, 359-366. 
  17. H. Rosenberg and R. Sa Earp, The geometry of properly embedded special surfaces in ℝ3; e.g., surfaces satisfying aH + bK = 1, where a and b are positive, Duke Math. J. 73 (1994), no. 2, 291-306. https://doi.org/10.1215/S0012-7094-94-07314-6 
  18. Y. Tun,cer, D. W. Yoon, and M. K. Karacan, Weingarten and linear Weingarten type tubular surfaces in E3, Math. Probl. Eng. 2011 (2011), Art. ID 191849, 11 pp. https://doi.org/10.1155/2011/191849 
  19. A. Ucum and K. Ilarslan, New types of canal surfaces in Minkowski 3-space, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 449-468. https://doi.org/10.1007/s00006-015-0556-7 
  20. K. Voss, Uber geschlossene Weingartensche Flachen, Math. Ann. 138 (1959), 42-54. https://doi.org/10.1007/BF01369665 
  21. J. Weingarten, Ueber eine Klasse auf einander abwickelbarer Flachen, J. Reine Angew. Math. 59 (1861), 382-393. https://doi.org/10.1515/crll.1861.59.382 
  22. J. Weingarten, Ueber die Flachen deren Normalen eine gegebene Flache beruhren, J. Reine Angew. Math. 62 (1863), 61-63. https://doi.org/10.1515/crll.1863.62.61