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SOME CHARACTERIZATIONS OF CANAL SURFACES

Young Ho Kim1, Huili Liu2, and Jinhua Qian∗

Abstract. This work considers a particular type of swept surface named

canal surfaces in Euclidean 3-space. For such a kind of surfaces, some

interesting and important relations about the Gaussian curvature, the
mean curvature and the second Gaussian curvature are found. Based on

these relations, some canal surfaces are characterized.

1. Introduction

The class of surfaces formed by sweeping a sphere was first investigated
by Monge in 1850, who named them canal surfaces. Canal surfaces may be
generated either by sweeping a sphere along a path, or by sweeping a particular
circular cross-section of the sphere along the same path (Figure 1 and Figure
2 cited from Google can show its generating process). These two methods of
sweeping a sphere and sweeping a disk give rise to generate parametric formulae
of canal surfaces.

Thus, a canal surface M can be parametrized as follows:

(1.1) x(s, θ) = c(s) + r(s){
√

1− r′(s)2 cos θN +
√

1− r′(s)2 sin θB− r′(s)T},

where c(s) is a unit speed curve parametrized by arc-length s, {T,N,B} is
the Frenet frame of c(s). In the sequel, T,N,B is the unit tangent, principal
normal and binormal vector fields, respectively. Here, the curve c(s) is called
the spine or center curve and r(s) is called the radial function of M (cf. [11]).

Received January 8, 2015.

2010 Mathematics Subject Classification. 53A05, 53B25.
Key words and phrases. canal surface, Gaussian curvature, mean curvature, second

Gaussian curvature, Weingarten surface, linear Weingarten surface.
1Supported by Basic Science Research Program through the National Research Foun-

dation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(2012R1A1A2042298).

2 and ∗ were supported by NSFC (No. 11371080).

c©2016 Korean Mathematical Society

461



462 Y. H. KIM, HUILI LIU, AND JINHUA QIAN

Figure 1 Figure 2

Canal surfaces have been applied to many fields, such as the solid and the
surface modeling for CAD/CAM, construction of blending surfaces, shape re-
construction and so on. Due to their wide applications, many mathematicians
and engineers studied canal surfaces from various viewpoints. Especially tubes
(or pipe surfaces) are particular canal surfaces with constant radial function,
which are studied in CAD. In [4] and [7], some applications of such surfaces are
presented. However, to the best of our knowledge, there are very few articles
which systematically discussed the geometric properties of canal surfaces.

In Section 2, some fundamental facts are prepared. The first, second and
third fundamental forms, the Gaussian curvature, the second Gaussian curva-
ture and the mean curvature are presented. About them, some interesting and
important relations are obtained. For instance, the Gaussian curvature and the
mean curvature of canal surfaces satisfy 2H = −(Kr+ 1

r ). Making use of these
conclusions, in Section 3, the (X,Y )-Weingarten canal surfaces are discussed.
Some special canal surfaces and the (X,Y )-linear Weingarten canal surfaces
are studied in Section 4.

All the surfaces under consideration are assumed to be smooth, regular and
topologically connected unless otherwise stated.

2. Preliminaries

From (1.1), we may assume −r′(s) = cosϕ for some smooth function ϕ =
ϕ(s). Then the canal surface M can be written as

(2.1) x(s, θ) = c(s) + r(s)(sinϕ cos θN + sinϕ sin θB + cosϕT ),

where s ∈ [0, l], θ ∈ [0, 2π), ϕ ∈ [0, π) and l is the total length of c(s).
Review the Frenet equations of a regular space curve:

T ′ = κN, N ′ = −κT + τB, B′ = −τN,(2.2)

where the prime denotes the differentiation with respect to s. The functions κ
and τ are called the curvature and torsion, respectively.

Remark 2.1. In particular, if the spine curve c(s) is a straight line, then the
Frenet frame {T,N,B} can be regarded as a trivial orthogonal frame. In such
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case, the canal surface is nothing but a surface of revolution. All the surfaces
of revolution and tubes are subclass of the canal surfaces.

For later use, some basic conclusions are given by direct calculation.
Initially, we have by (2.1) and (2.2)

(2.3) xs =
∂x

∂s
= x1sT + x2sN + x3sB,

where

x1s = sin2 ϕ− rr′′ − rκ sinϕ cos θ;

x2s = r′ sinϕ cos θ − rr′κ− rτ sinϕ sin θ − rr′ϕ′ cos θ;

x3s = r′ sinϕ sin θ + rτ sinϕ cos θ − rr′ϕ′ sin θ,
and

(2.4) xθ = (−r sinϕ sin θ)N + (r sinϕ cos θ)B.

Then, the quantities of the first fundamental form are given by

E = 〈xs, xs〉
= r2(κ2 sin2 ϕ cos2 θ + r′2κ2 + τ2 sin2 ϕ+ ϕ′2 + 2κϕ′ cos θ

+ 2r′κτ sinϕ sin θ) + sin2 ϕ− 2(rr′′ + rκ sinϕ cos θ);

F = 〈xs, xθ〉 = r2τ sin2 ϕ+ r2r′κ sinϕ sin θ;

G = 〈xθ, xθ〉 = r2 sin2 ϕ.

(2.5)

By (2.5), we get

EG− F 2 = r2(rr′′ + rκ sinϕ cos θ − sin2 ϕ)2.

From (2.3) and (2.4), the unit normal vector field to M is given by

n =
xs × xθ
‖xs × xθ‖

= (cosϕ)T + (sinϕ cos θ)N + (sinϕ sin θ)B,

which points outwards the canal surface M.
Furthermore, we have

ns = −(r′′ + κ sinϕ cos θ)T − (r′κ+ r′ϕ′ cos θ + τ sinϕ sin θ)N

+ (τ sinϕ cos θ − r′ϕ′ sin θ)B,
nθ = −(sinϕ sin θ)N + (sinϕ cos θ)B.

Then, the quantities of the second fundamental form are obtained by

L =− 〈xs, ns〉
=− r(κ2 sin2 ϕ cos2 θ + r′2κ2 + τ2 sin2 ϕ+ ϕ′2 + 2κϕ′ cos θ

+ 2r′κτ sinϕ sin θ) + (r′′ + κ sinϕ cos θ);

M =− 〈xθ, ns〉 = −rτ sin2 ϕ− rr′κ sinϕ sin θ;

N =− 〈xθ, nθ〉 = −r sin2 ϕ.

(2.6)
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And as well, the quantities of the third fundamental form are given by

e = 〈ns, ns〉
= κ2 sin2 ϕ cos2 θ + r′2κ2 + τ2 sin2 ϕ+ ϕ′2

+ 2κϕ′ cos θ + 2r′κτ sinϕ sin θ;

f = 〈nθ, ns〉 = τ sin2 ϕ+ r′κ sinϕ sin θ;

g = 〈nθ, nθ〉 = sin2 ϕ.

(2.7)

Based on (2.5)-(2.7), we have the following lemma.

Lemma 2.2. The first, second and third fundamental forms of canal surfaces
satisfy

L =
E + P

−r
, M =

F

−r
, N =

G

−r
;

e =
L−Q
−r

, f =
M

−r
, g =

N

−r
and

EG− F 2 = r2P 2, LN −M2 = rPQ, eg − f2 = Q2,(2.8)

where

P = rr′′ + rκ sinϕ cos θ − sin2 ϕ = rQ− sin2 ϕ,

Q = r′′ + κ sinϕ cos θ.
(2.9)

Remark 2.3. Due to regularity, we see that P 6= 0 everywhere by (2.8).

From Lemma 2.2, the Gaussian curvature K and the mean curvature H of
M are given by, respectively

(2.10) K =
LN −M2

EG− F 2
=

Q

rP
,

(2.11) H =
EN − 2FM +GL

2(EG− F 2)
=

2P + sin2 ϕ

−2rP
.

From (2.9)-(2.11), we have the following important theorem.

Theorem 2.4. The Gaussian curvature K and the mean curvature H of canal
surfaces satisfy

(2.12) H = −1

2
(Kr +

1

r
).

Then, the principal curvatures κ1, κ2 are given by

κ1 = −Kr, κ2 = −1

r
.(2.13)
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In [3], one of present authors studied the second Gaussian curvature KII

which is analogous to the Gaussian curvature derived from the non-degenerate
second fundamental form regarded as a new Riemannian (or pseudo-Riemann-
ian) metric. The definition of the second Gaussian curvature is as follows:

KII =
1

(LN −M2)2


∣∣∣∣∣∣
− 1

2Lθθ +Msθ − 1
2Nss

1
2Ls Ms − 1

2Lθ
Mθ − 1

2Ns L M
1
2Nθ M N

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2Lθ

1
2Ns

1
2Lθ L M
1
2Ns M N

∣∣∣∣∣∣
.

From (2.8), the second Gaussian curvature KII of M can be written as

(2.14) KII =
1

r2P 2Q2

4∑
i=0

wi cosi θ,

where the coefficients wi (i = 0, 1, 2, 3, 4) are given by

w0 =− r3ϕ′4 sin4 ϕ+
1

4
rϕ′2 sin4 ϕ(1− 3 sin2 ϕ) +

3

2
r2ϕ′3 sin5 ϕ− 1

4
rκ2 sin6 ϕ

− 1

4
rϕ′′ sin5 ϕ cosϕ+

1

4
ϕ′ sin5 ϕ cos2 ϕ− 1

4
rκτ sin5 ϕ cosϕ sin θ;

w1 =− 4r3κϕ′3 sin4 ϕ+
9

2
r2κϕ′2 sin5 ϕ+

1

4
rκϕ′ sin4 ϕ(1− 5 sin2 ϕ)

+
1

4
κ sin5 ϕ cos2 ϕ− 1

4
rκ′ sin5 ϕ cosϕ;

w2 =− 6r3κ2ϕ′2 sin4 ϕ+
9

2
r2κ2ϕ′ sin5 ϕ− 1

4
rκ2 sin6 ϕ;

w3 =− 4r3κ3ϕ′ sin4 ϕ+
3

2
r2κ3 sin5 ϕ;

w4 =− r3κ4 sin4 ϕ.

(2.15)

On the other hand, we have by (2.9)

(2.16) r2P 2Q2 =

4∑
j=0

vj cosj θ,

where vj (j = 0, 1, 2, 3, 4) are functions given by

v0 = r4ϕ′4 sin4 ϕ+ r2ϕ′2 sin6 ϕ− 2r3ϕ′3 sin5 ϕ;

v1 = 4r4κϕ′3 sin4 ϕ− 6r3κϕ′2 sin5 ϕ+ 2r2κϕ′ sin6 ϕ;

v2 = 6r4κ2ϕ′2 sin4 ϕ− 6r3κ2ϕ′ sin5 ϕ+ r2κ2 sin6 ϕ;

v3 = 4r4κ3ϕ′ sin4 ϕ− 2r3κ3 sin5 ϕ;

v4 = r4κ4 sin4 ϕ.

(2.17)

From (2.11) and (2.14)-(2.17), we have the following theorem which can simplify
some later calculations greatly.
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Theorem 2.5. The second Gaussian curvature KII and the mean curvature
H of non-developable canal surfaces satisfy

(2.18) KII = H +
R

4r2P 2Q2
,

where R =
∑2
k=0 uk cosk θ and the coefficients uk (k = 0, 1, 2) are as follows:

u0 = 2rr′2r′′2 sin2 ϕ− rκ2 sin6 ϕ

+ rr′r′′′ sin4 ϕ+ r′2r′′ sin4 ϕ+ rr′κτ sin5 ϕ sin θ;

u1 = rr′2r′′κ sin3 ϕ+ r′2κ sin5 ϕ+ rr′κ′ sin5 ϕ;

u2 = rκ2 sin6 ϕ.

Next, we compute the partial derivatives of the Gaussian curvature K, the
mean curvature H and the second Gaussian curvature KII of M for later use.

In the first place, we have from (2.9) and (2.10)

Ks =
−2rr′κ2 sin2 ϕ cos2 θ + (r′κ− rκ′) sin3 ϕ cos θ − 5rr′r′′κ sinϕ cos θ

r2P 2

+
r′r′′ sin2 ϕ− rr′′′ sin2 ϕ− 4rr′r′′2

r2P 2
;

Kθ =
κ sin3 ϕ sin θ

rP 2
.

(2.19)

By (2.12) and (2.19), we have

Hs = − 1

2
(Ksr +Kr′ − r′

r2
)

=
2r2r′κ2 sin2 ϕ cos2 θ − (2rr′κ− r2κ′) sin3 ϕ cos θ + 5r2r′r′′κ sinϕ cos θ

2r2P 2

+
−2rr′r′′ sin2 ϕ+ r2r′′′ sin2 ϕ+ 4r2r′r′′2 + r′ sin4 ϕ

2r2P 2
;

Hθ =− 1

2
rKθ

= − κ sin3 ϕ sin θ

2P 2
.

(2.20)

At last, we calculate the partial derivative of KII . By (2.18), we have

(KII)s = Hs +
1

4r4P 4Q4

{
∂R

∂s
(r2P 2Q2)−R∂(r2P 2Q2)

∂s

}
;

(KII)θ = Hθ +
1

4r4P 4Q4

{
∂R

∂θ
(r2P 2Q2)−R∂(r2P 2Q2)

∂θ

}
,

(2.21)
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where

∂R

∂s
=

2∑
k=0

∂uk
∂s

cosk θ;

∂R

∂θ
= (−2u2 sin θ + rr′κτ sin5 ϕ) cos θ − u1 sin θ;

∂(r2P 2Q2)

∂s
=

4∑
j=0

∂vj
∂s

cosj θ;

∂(r2P 2Q2)

∂θ
= − sin θ

4∑
j=1

jvj cosj−1 θ.

(2.22)

Definition. For a pair (X,Y ), X 6= Y , of the curvatures K,H and KII of a
canal surface M, if M satisfies

Φ(X,Y ) = 0,

then it is said to be a (X,Y )-Weingarten canal surface, where Φ is the Jacobi
function defined by Φ = XY − Y X.

Definition. For a pair (X,Y ), X 6= Y , of the curvatures K,H and KII of a
canal surface M, if M satisfies

aX + bY = c,

then it is said to be a (X,Y )-linear Weingarten canal surface, where a, b, c ∈ R
and (a, b, c) 6= (0, 0, 0) (cf. [1], [5], [6], [9]).

Remark 2.6. The (X,Y )-linear Weingarten canal surfaces can be considered
as a natural generalization of canal surfaces with constant Gaussian curvature,
constant mean curvature or constant second Gaussian curvature.

3. (X,Y )-Weingarten canal surfaces

Theorem 3.1. A canal surface M is a (K,H)-Weingarten canal surface if and
only if it is a tube or a surface of revolution.

Proof. A (K,H)-Weingarten canal surface M satisfies Jacobi equation

(3.1) HsKθ = HθKs.

From (2.20), we have

(3.2) (Kr′ − r′

r2
)Kθ = 0.

By (3.2), we consider the subset O = {p ∈ M | Kθ(p) = 0} of M. Suppose
that O has a non-empty interior O1. On O1, from (2.19) and sinϕ 6= 0 (or else
P = 0, M is not regular), we have κ = 0. Thus, O1 is an open part of a surface
of revolution. By continuity, O1 must be M. Now, we may assume Kθ 6= 0



468 Y. H. KIM, HUILI LIU, AND JINHUA QIAN

everywhere on M. Then, we have Kr′ = r′

r2 from (3.2). Note that K 6= 1
r2 ,

otherwise, M is not regular. Hence, r′ = 0 on M. Thus, M is a tube.
Conversely, if M is a surface of revolution (i.e., κ = 0), then from (2.9)-(2.11),

we have

K =
r′′

r(rr′′ − 1 + r′2)
, H =

2rr′′ − 1 + r′2

−2r(rr′′ − 1 + r′2)
.(3.3)

Thus, their partial derivatives are given by

Ks =
1

r2
{( rr′′

rr′′ − 1 + r′2
)′ − 2r′r′′

rr′′ − 1 + r′2
},

Hs =− 1

2r2
{r( rr′′

rr′′ − 1 + r′2
+ 1)}′,

Kθ =Hθ = 0.

(3.4)

From (3.4), the Jacobi equation (3.1) turns into an identity, obviously.
On the other hand, if M is a tube (i.e., r is a constant), then from (2.9)-

(2.11), we have

K =
κ cos θ

r(rκ cos θ − 1)
, H =

2rκ cos θ − 1

−2r(rκ cos θ − 1)
.(3.5)

Therefore, their partial derivatives are given by

Ks =
−κ′ cos θ

rP 2
, Kθ =

κ sin θ

rP 2
;(3.6)

Hs =
κ′ cos θ

2P 2
, Hθ = −κ sin θ

2P 2
.(3.7)

By (3.6) and (3.7), the Jacobi equation (3.1) is satisfied everywhere. �

Theorem 3.2. For a non-developable canal surface M, the following state-
ments are equivalent:

• M is locally a surface of revolution or a tube whose spine curve has a
non-zero constant curvature;

• M is a (H,KII)-Weingarten canal surface;
• M is a (K,KII)-Weingarten canal surface.

Proof. Suppose that M is a non-developable (H,KII)-Weingarten canal sur-
face. Then, it satisfies

(3.8) (KII)sHθ = (KII)θHs.

By (2.21), we have

Hs

{
∂R

∂θ
(r2P 2Q2)−R∂(r2P 2Q2)

∂θ

}
= Hθ

{
∂R

∂s
(r2P 2Q2)−R∂(r2P 2Q2)

∂s

}
.

(3.9)
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Comparing the coefficients of the highest degree of (3.9) regarding cos θ with
the help of (2.20), (2.22), we have

(3.10) 2r′κ8 sinϕ sin θ + r′2κ7τ = 0.

Consider the open subset O = {p ∈ M | κ(p) 6= 0} of M. Suppose that O is
not empty. On O, r′ = 0 by (3.10). Thus, we have by (2.16)-(2.18) and (2.22)

R = −rκ2 sin2 θ, r2P 2Q2 = r2κ2 cos2 θ(rκ cos θ − 1)2

and

∂R

∂s
= −2rκκ′ sin2 θ;

∂R

∂θ
= −2rκ2 sin θ cos θ;

∂(r2P 2Q2)

∂s
= 4r4κ3κ′ cos4 θ − 6r3κ2κ′ cos3 θ + 2r2κκ′ cos2 θ;

∂(r2P 2Q2)

∂θ
= −4r4κ4 cos3 θ sin θ + 6r3κ3 cos2 θ sin θ − 2r2κ2 cos θ sin θ.

Then, from (2.21), (3.7) and the above equations, we get

(KII)s =
κ′(rκ cos3 θ − 2 cos2 θ + 1)

2 cos θP 3
;

(KII)θ =
− sin θ(r2κ2 cos4 θ − 2rκ cos3 θ + 2rκ cos θ − 1)

2r cos3 θP 3
.

(3.11)

Substituting (3.7) and (3.11) into (3.8), we get

κκ′(rκ cos3 θ − 2 cos2 θ + 1)

cos θ
=
κ′(r2κ2 cos4 θ − 2rκ cos3 θ + 2rκ cos θ − 1)

r cos2 θ
.

From the above equation, we obtain κ′ = 0. By continuity, O must be
M, which is an open part of a tube whose spine curve has non-zero constant
curvature. Particularly, if the torsion of the spine curve is zero, M is an open
part of a torus; it is an open part of a tube around a helix when the torsion is
a non-zero constant. Now, suppose κ ≡ 0, then it is an open part of a surface
of revolution. In this case, we should note that the radius cannot be a constant
in order to guarantee the existence of the second Gaussian curvature.

Conversely, suppose that M is a surface of revolution or a tube whose spine
curve has a non-zero constant curvature.

If M is a surface of revolution, we know from (2.16)-(2.18)

R = r′(1− r′2)[(rr′′ − 1 + r′2)′(rr′′)− (rr′′)′(rr′′ − 1 + r′2)],

r2P 2Q2 = (rr′′)2(rr′′ − 1 + r′2)2

and

(3.12) KII = H +
r′

4
(

1

rr′′
− 1

rr′′ − 1 + r′2
)(log | rr′′

rr′′ − 1 + r′2
|)′.
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From (3.4) and (3.12), we get

(KII)s = − 1

2r2
{r( rr′′

rr′′ − 1 + r′2
+ 1)}′

+
r′′

4
(

1

rr′′
− r′′

rr′′ − 1 + r′2
)(log | rr′′

rr′′ − 1 + r′2
|)′

+
r′

4
(

1

rr′′
− 1

rr′′ − 1 + r′2
)′(log | rr′′

rr′′ − 1 + r′2
|)′

+
r′

4
(

1

rr′′
− 1

rr′′ − 1 + r′2
)(log | rr′′

rr′′ − 1 + r′2
|)′′;

(KII)θ = 0.

By (3.4) and the above equations, the Jacobi equation (3.8) turns into an
identity. In case that M is a tube whose spine curve has a non-zero constant
curvature, it obviously satisfies the Jacobi equation (3.8).

Using quite similar argument developed above, we have the same results
for the cases of (K,KII)-Weingarten canal surfaces and (H,KII)-Weingarten
canal surfaces. This completes the proof. �

4. (X,Y )-linear Weingarten canal surfaces

In the first place, we discuss some special (X,Y )-linear Weingarten canal
surfaces which include developable canal surfaces, minimal canal surfaces and
the canal surfaces with vanishing second Gaussian curvature.

Theorem 4.1. A canal surface M is developable if and only if it is a circular
cylinder or a circular cone.

Proof. M is developable if and only if its Gaussian curvature K ≡ 0. By (2.10),
we have Q ≡ 0. From (2.9), we get

(4.1) r′′(s) + κ(s) sinϕ(s) cos θ = 0.

It follows that r′′ = 0 and κ = 0. Therefore r(s) = as + b, where a, b are
constants and a 6= ±1 (or else sinϕ = 0, a contradiction). Therefore, M is a
circular cylinder (a = 0) or a circular cone (a 6= 0, a 6= ±1), respectively. �

Remark 4.2. From Theorem 4.1, a canal surface is non-developable if and only
if Q 6= 0. Under this condition, the second Gaussian curvature can be defined.

Theorem 4.3. A canal surface M is minimal if and only if it is a catenoid.

Proof. Since M is minimal if and only if its mean curvature H ≡ 0, then (2.11)
implies

2P + sin2 ϕ = 0.

From (2.9), we get

(4.2) 2rr′′ + 2rκ sinϕ cos θ − sin2 ϕ = 0.
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Therefore, one can obtain 2rr′′ − sin2 ϕ = 0 and rκ sinϕ = 0. Since r 6= 0,
sinϕ 6= 0, then κ = 0 and M is a surface of revolution. It is well known that
the only minimal surface of revolution is the catenoid. �

It is well known that a minimal surface has vanishing second Gaussian cur-
vature KII . However, a surface with vanishing second Gaussian curvature need
not to be minimal (cf. [9]).

Theorem 4.4. A non-developable canal surface with vanishing second Gauss-
ian curvature is a surface of revolution which satisfies

(log r′2)′ =
κ2 − κ1
κ2 + κ1

(log |κ1
κ2
|)′.

Proof. When KII = 0, we have from (2.18)

H = − R

4r2P 2Q2
.

From (2.11), we get

(4.3) R = 2rPQ2(2P + sin2 ϕ).

Considering the coefficient of the highest degree of (4.3) regarding cos θ, we
have κ = 0. Then the canal surface is a surface of revolution.

Furthermore, by (3.3) and (3.12) we have

2rr′′ − 1 + r′2

−2r(rr′′ − 1 + r′2)
+
r′

4
(

1

rr′′
− 1

rr′′ − 1 + r′2
)(log | rr′′

rr′′ − 1 + r′2
|)′ = 0.(4.4)

Clearing up (4.4), we get

(4.5)
2rr′′ − 1 + r′2

r′2 − 1
(log r′2)′ = (log | rr′′

rr′′ − 1 + r′2
|)′.

Combining (2.13) (when κ = 0) and (4.5), we get the conclusion. �

Next, we study the traditional (X,Y )-linear Weingarten canal surfaces.
Without loss of generality, we may assume c = 1 in aX + bY = c.

Theorem 4.5. A canal surface M is a (K,H)-linear Weingarten canal surface
if and only if it is one of the following surfaces:

• a tube with radius r = − b
2 ;

• a surface of revolution such as

x(s, θ) = (r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ, r(s) cosϕ(s) + s),

where r(s) is given by (4.7).

Proof. A (K,H)-linear Weingarten canal surface implies

aK + bH = 1,

where a, b ∈ R and (a, b) 6= (0, 0).
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From (2.12), we obtain

(2ar − br2)K = b+ 2r.

By (2.10), we get

(4.6)
(2ar − br2)(r′′ + κ sinϕ cos θ)

r(rr′′ + rκ sinϕ cos θ − sin2 ϕ)
= b+ 2r,

from which,

2κ(r2 + br − a) sinϕ cos θ + 2(r2 + br − a)r′′ − (b+ 2r)(1− r′2) = 0.

Therefore, we get

κ(r2 + br − a) sinϕ = 0, 2(r2 + br − a)r′′ − (b+ 2r)(1− r′2) = 0.

Case 1: If r2 + br − a 6= 0, then κ = 0. Thus, M is a surface of revolution
and its radial function satisfies

2(r2 + br − a)r′′ = (b+ 2r)(1− r′2).

Solving the above equation, we get

(4.7) s = c2 ±
∫ √

r2 + br − a
r2 + br − a− c1

dr,

where c1, c2 are constants (cf. [8]).
Since κ = 0, without loss of generality, we may assume the spine curve is

c(s) = (0, 0, s) and T = (0, 0, 1), N = (1, 0, 0), B = (0, 1, 0), respectively. Then,
M can be expressed by

x(s, θ) = (r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ, r(s) cosϕ(s) + s),

where r(s) is given by (4.7).
Case 2: If κ 6= 0, then r2+br−a = 0. Hence, r = − b

2 is a non-zero constant,

M is a tube and a, b satisfy b2 + 4a = 0.
Note that M is a circular cylinder if κ = r2 + br − a ≡ 0. �

Corollary 4.6. The canal surface M which has non-zero constant Gaussian
curvature is a surface of revolution such as

x(s, θ) = (r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ, r(s) cosϕ(s) + s),

where r(s) is given by (4.8).

Proof. By Remark 2.6 and Theorem 4.5 with b = 0, M has non-zero constant
Gaussian curvature (K = 1

a ). Obviously, M cannot be a tube and it is a surface
of revolution. By a similar development as was given in Theorem 4.5, it can be
expressed by

x(s, θ) = (r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ, r(s) cosϕ(s) + s),
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in which, r(s) is given by

(4.8) s = c2 ±
∫ √

r2 − a
r2 + c1

dr,

where c1, c2 are constants (cf. [8]). �

Corollary 4.7. The canal surface M which has non-zero constant mean cur-
vature is a surface of revolution such as

x(s, θ) = (r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ, r(s) cosϕ(s) + s),

where r(s) is given by (4.9).

Proof. By Remark 2.6 and Theorem 4.5 with a = 0, M has non-zero constant
mean curvature (H = 1

b ). Similarly as Corollary 4.6, it is a surface of revolution
and it can be expressed by

x(s, θ) = (r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ, r(s) cosϕ(s) + s),

in which, r(s) is given by

(4.9) s = c2 ±
∫ √

r2 + br

r2 + br − c1
dr,

where c1, c2 are constants (cf. [8]). �

Theorem 4.8. A non-developable canal surface M is a (H,KII)-linear Wein-
garten canal surface if and only if it is an open part of a surface of revolution
which satisfies

1

a
(log r′2)′ =

κ2 − κ1
(a+ b)(κ2 + κ1)− 2

(log |κ1
κ2
|)′,

where a, b ∈ R and (a, b) 6= (0, 0).

Proof. Suppose M is a (H,KII)-linear Weingarten canal surface. It implies

aKII + bH = 1,

where a, b ∈ R and (a, b) 6= (0, 0).
From (2.11) and (2.14), we have

a

∑4
i=0 wi cosi θ

r2P 2Q2
+ b

2P + sin2 ϕ

−2rP
= 1.

That is,

(4.10) 2a

4∑
i=0

wi cosi θ − brPQ2(2P + sin2 ϕ) = 2

4∑
j=0

vj cosj θ.

Comparing the coefficient of cos4 θ in (4.10), we have

2aw4 − 2br3κ4 sin4 ϕ = 2v4.



474 Y. H. KIM, HUILI LIU, AND JINHUA QIAN

By (2.15) and (2.17), we get

κ4(r + a+ b) = 0.

Consider the open subset O = {p ∈ M | κ(p) 6= 0} of M. Suppose O 6= ∅.
Let O1 be a component of O. On O1, we have r + a + b = 0 which means r
is a constant. By comparing the other terms in (4.10), we get κ ≡ 0 which is
a contradiction. Therefore, we have O1 = ∅. Thus, we have κ = 0 and it is a
surface of revolution. From (3.3) and (3.12), we obtain

ar′

4
(

1

rr′′
− 1

rr′′ − 1 + r′2
)(log | rr′′

rr′′ − 1 + r′2
|)′

= 1 + (a+ b){ 2rr′′ − 1 + r′2

2r(rr′′ − 1 + r′2)
}.

Clearing up the above equation by (2.13) (when κ = 0), we get

1

a
(log r′2)′ =

κ2 − κ1
(a+ b)(κ2 + κ1)− 2

(log |κ1
κ2
|)′.

�

Theorem 4.9. A non-developable canal surface M is a (K,KII)-linear Wein-
garten canal surface if and only if it is an open part of a surface of revolution
which satisfies

1

a
(log r′2)′ =

κ2 − κ1
a(κ2 + κ1) + 2bκ1κ2 − 2

(log |κ1
κ2
|)′,

where a, b ∈ R and (a, b) 6= (0, 0).

Proof. Suppose that M is a (K,KII)-linear Weingarten canal surface. Then,
we have

aKII + bK = 1,

where a, b ∈ R and (a, b) 6= (0, 0).
From (2.10) and (2.14), we have

a

∑4
i=0 wi cosi θ

r2P 2Q2
+ b

Q

rP
= 1,

from which,

(4.11) a

4∑
i=0

wi cosi θ + brPQ3 =

4∑
j=0

vj cosj θ.

Comparing the coefficient of cos4 θ in (4.11), we have

aw4 + br2κ4 sin4 ϕ = v4.

With the help of (2.15) and (2.17), we have

κ4(r2 + ar − b) = 0.

By a similar argument as in Theorem 4.8, we get the conclusion. �
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In Theorem 4.8 (or Theorem 4.9), we put b = 0, then the canal surface has
non-zero constant second Gaussian curvature (KII = 1

a ).

Corollary 4.10. The canal surface M which has non-zero constant second
Gaussian curvature is an open part of a surface of revolution which satisfies

1

a
(log r′2)′ =

κ2 − κ1
a(κ2 + κ1)− 2

(log |κ1
κ2
|)′,

where a(a 6= 0) ∈ R.

At last, we study the (X,Y )-linear Weingarten canal surfaces which satisfy
KII = K and KII = H, respectively.

Theorem 4.11. A non-developable canal surface satisfying KII = K is a
surface of revolution which satisfies

(log r′2)′ =
κ2 − κ1

(κ2 + κ1)− 2κ1κ2
(log |κ1

κ2
|)′.

Proof. When KII = K, we have by (2.10) and (2.18)

(4.12)
2P + sin2 ϕ

−2rP
+

R

4r2P 2Q2
=

Q

rP
.

Comparing the coefficient of the highest degree of (4.12) regarding cos θ, we
have κ = 0. Then the canal surface is a surface of revolution.

By (3.3) and (3.12), we have

2rr′′ − 1 + r′2

−2r(rr′′ − 1 + r′2)
+
r′

4
(

1

rr′′
− 1

rr′′ − 1 + r′2
)(log | rr′′

rr′′ − 1 + r′2
|)′

=
r′′

r(rr′′ − 1 + r′2)
.

From (2.13) (when κ = 0), we obtain the conclusion. �

Theorem 4.12. For a non-developable canal surface satisfying KII = H, the
following conclusions are equivalent:

• the ratio of the principal curvatures is constant;
• the canal surface is a surface of revolution parametrized by

x(s, θ) = (r(s) sinϕ cos θ, r(s) sinϕ sin θ, r(s) cosϕ+ s),

where r(s) is given by (4.16).

Proof. When KII = H, we have R = 0 by (2.18). Considering the coefficient
of cos2 θ in R, we get κ = 0. Then the canal surface is a surface of revolution.

Since κ = 0, we have from (3.12)

r′

4
(

1

rr′′
− 1

rr′′ − 1 + r′2
)(log | rr′′

rr′′ − 1 + r′2
|)′ = 0.(4.13)
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By (4.13) and the canal surface is non-developable, we get

(4.14) (log | rr′′

rr′′ − 1 + r′2
|)′ = 0.

Equation (4.14) implies

(4.15)
rr′′

rr′′ − 1 + r′2
= c,

where c (c 6= 1) is a constant. From (2.13) (when κ = 0), the ratio of the
principal curvatures is a constant.

Solving (4.15), we get

s = c2 +

∫
(c− 1)dυ

c(1− υ2)|1− υ2|
c1(c−1)

2c

, r =
1

|1− υ2|
c1(c−1)

2c

,(4.16)

where c1 and c2 are constants (cf. [8]).
Similarly as Theorem 4.5, the canal surface is parametrized by

x(s, θ) = (r(s) sinϕ(s) cos θ, r(s) sinϕ(s) sin θ, r(s) cosϕ(s) + s),

where r(s) is given by (4.16). �
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