• Title/Summary/Keyword: sealing treatment

Search Result 139, Processing Time 0.029 seconds

Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder (양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

Evaluation of Corrosion and Cavitation Erosion Resistance of Sealed Aluminum Alloy after Anodizing Treatment in Seawater (양극산화 후 실링처리된 알루미늄 합금의 해수 내 내식성과 캐비테이션 침식 저항성 평가)

  • Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • Various sealing techniques were applied to the anodized 5083 aluminum alloy for marine environment to reduce corrosion and cavitation erosion damage. Electrochemical experiments and cavitation erosion tests were conducted to evaluate the corrosion resistance and cavitation resistance of the anodic oxide film treated with sealing in natural seawater solution. Then, damaged surface morphology was analyzed by scanning electron microscope(SEM) and 3D microscope. As the results of the electrochemical experiments, it was observed that the surface damage of all the experimental conditions in the anodic polarization experiment was locally grown by the combination of crack and corrosion damage. In the Tafel analysis, the corrosion resistance of all sealing treatment conditions was improved compared to the anodizing. On the other hand, cavitation erosion tests showed that the anodizing and all the sealing treatment conditions generated local pit damage by cavitation erosion attack and grew to crater damage in the observation of damaged surface by SEM. Also, the weight loss and the surface damage depth measured with the experiment time presented that most of the sealing treatment conditions showed better cavitation erosion resistance than the anodizing, and they had an incubation period at the beginning of the experiment.

Study on Improvement of Corrosion Resistance and Wear Resistance by Anodizing and Sealing Treatment with Nano-diamond Powder on aluminum (알루미늄의 아노다이징과 나노 다이아몬드 분말 봉공처리에 의한 내식성과 내마모성 향상에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.121-127
    • /
    • 2014
  • In this study, in order to improve corrosion resistance and wear resistance of aluminum, surface treatment was made by anodizing with oxalic acid solution and sealing with nano-diamond powder. Average size of nano-diamond powder was 30nm. Anodizing with oxalic acid made many pores in the aluminum oxide layer. Pore size and oxide thickness were investigated by scanning electron microscope (SEM). Pore size increased as temperature increased and voltage increased. It was possible to make oxide layer with pore diameter more than 50 nm. Oxide thickness increased as temperature and voltage and treatment time increased. Oxide layer with above $10{\mu}m$ thickness was made. Aluminum oxide layer with many pores was sealed by water with nano-diamond powder. Surface morphology was investigated by SEM. After sealing treatment with nano-diamond powder, corrosion resistance, wear resistance and hardness increased.

Effects of Pretreatment for Controlling Internal Water Transport Direction on Moisture Content Profile and Drying Defects in Large-Cross-Section Red Pine Round Timber during Kiln Drying

  • Bat-Uchral BATJARGAL;Taekyeong LEE;Myungsik CHO;Chang-Jin LEE;Hwanmyeong YEO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.493-508
    • /
    • 2023
  • Round timber materials of 600 mm length, cut from large-cross-section round timber of red pine (Pinus densiflora S. et Z.) of 450 mm width and 4.2 m length, were prepared as the target of kiln drying in this study. After treating the target materials through end sealing (ES), end sealing - kerfing (ES-K), lateral sealing - end sealing - boring (LS-ES-B), or lateral sealing - partial end sealing (LS-PES), the effects of the treatment on the incidence of drying defects were determined. The target materials with exposed lateral surface and sealed cross surface were steamed at the initial temperature of 65℃ above the official pest control temperature of 56℃, followed by kiln drying toward the final temperature of 75℃. The target materials with sealed lateral surfaces, on the other hand, were dried at the initial temperature of 90℃ at almost the maximum temperature of conventional kiln drying, as there is no risk of early check formation caused by surface moisture evaporation. The final temperature was set at approximately 100℃. The drying time, taken for the target materials with initial moisture content of 70%-80% to reach the target moisture content of 19%, varied across treatment conditions. The measured drying time was 1,146 hours (approximately 48 days) for the timber with sealed cross surface and 745 hours (approximately 31 days) for the timber with sealed lateral surface, until the moisture content reached the target level. The formation of surface checks could not be prevented in the control and ES groups, but a definite preventive effect was obtained for the LS-ES-B and LS-PES groups.

Solid Particle Erosion Behavior of Inconel 625 Thermal Spray Coating Layers (Inconel 625 열용사 코팅 층의 고상입자 침식 거동)

  • Park, Il-Cho;Han, Min-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.521-528
    • /
    • 2021
  • In this study, to repair damaged economizer fin tubes on ships, sealing treatment was performed after applying arc thermal spray coating technology using Inconel 625. A solid particle erosion (SPE) experiment was conducted according to ASTM G76-05 to evaluate the durability of the substrate, thermal spray coating (TSC), and thermal spray coating+sealing treatment (TSC+Sealing) specimens. The surface damage shape was observed using a scanning electron microscope and 3D laser microscope, and the durability was evaluated through the weight loss and surface roughness analysis. Consequently, the durability of the substrate was superior to that of TSC and TSC+Sealing, which was believed to be owing to numerous pore defects in the TSC layer. In addition, the mechanism of solid particle erosion damage was accompanied by plastic deformation and fatigue, which were the characteristics of ductile materials in the case of the substrate, and the tendency of brittle fracture in the case of TSC and TSC+Sealing was confirmed.

A STUDY ON THE SEALING PROPERTIES OF TEMPORARY FILLING MATERIALS USED IN ENDODONTICS (근관치료시 사용되는 수종 임시충전재의 변연 폐쇄효과에 관한 연구)

  • Yoo, Hyun-Mee;Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.33-42
    • /
    • 1991
  • The purpose of this study was to evaluate the sealing properties of the temporary filling materials used in endodontic treatment Access cavities were prepared in 135 extracted human molar teeth. Then, cotton pellets were placed in the pulp chamber until the depth of 5 mm for the temporary filling materials; Caviton, zine oxide-eugenol, double sealing (A) (stopping 15 mm + zinc oxide - eugenol, 3.5mm ) double sealing (B) (stopping 3.0 mm + zinc oxide - eugenol 2.0 mm) and gutta percha stopping. After filling the materials, the teeth were immersed in 1 % methylene blue solutions for 3 days, 1 week and 2 weeks. Then thermal cycling was performed at the temperature of $60^{\circ}C$ and $4^{\circ}C$, followed by longitudinal sections on the center of tooth. Finally, staining on the cotton pellet was evaluated. The following results were obtained. 1. Stopping showed lower marginal sealing quality than Caviton, zinc oxide - eugenol and double sealing. 2. In 1 week group, Caviton showed higher marginal sealing quality than zinc oxide-eugenol, double sealing and stopping. 3. Caviton and double sealing (B) showed a great decrease in marginal sealing quality with the increse of time. 4. Caviton had high marginal sealing quality in 3 day group and 1 week group, but in 2 week group, Caviton showed a great decrease. 5. Double sealing (B) showed fairly high marginal sealing quality in 3 day group, but decreased greatly after 1 week on.

  • PDF

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

Electrochemical Characteristics in Sea Water of Al-3%Mg Arc Spray Coating Layer for Corrosion Protection with Sealing Treatment (후처리 적용에 따른 방식용 Al-3%Mg 용사코팅 층의 해수 내 전기화학적 특성)

  • Park, Il-Cho;Kim, Seong-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.974-980
    • /
    • 2015
  • Arc thermal spray coating using Al-3%Mg thermal spray wire was carried out to prevent steel from corrosion damage under the marine environment. Post-sealing was applied to Al-3%Mg spray coating treatment using organic/inorganic composite ceramics in order to improve the corrosion resistance of the as-sprayed coating. The results of various electrochemical experiments with sealing treatment indicated that the improvement in corrosion resistance was observed due to low current density in all applied potential range during anodic and cathodic polarization experiments. Futhermore, the natural potential measurement exhibited severe potential fluctuation due to influence of micro-crack presence on the surface of sealed thermal spray coating layer. In addition, the sealed layer was easily eliminated during anodic polarization. Nevertheless, Al-3%Mg spray coating layer improved corrosion resistance by sealing treatment because the sealed coating efficiency was determined to be 92.11%, indicating the exterior environment barrier effect which is based on the Tafel analysis.

A Basic Study on the Storage of Major Chinese Herbal Medicine Materials , Moutan Radicis Cortex (주요 한약재인 목단피의 저장에 관한 기초 연구)

  • KyongJuChoi
    • Korean Journal of Plant Resources
    • /
    • v.7 no.2
    • /
    • pp.183-186
    • /
    • 1994
  • This study was conducted to investigate desirable storage method to major chinese herbal medicine materials, Moutan Radicis Cortex in different packing materials and sealing degree. The loss in weight of Moutan Radicis Cortex as influenced by packing materials was the lowest at complete sealing treatment with transparent or black polyethylene film. The rot ratio of Moutan Radicis Cortex during the storage period was not difference between packing materials, transparent and black polyethylene film, but rot ratio of complete sealing condition was lower than punch ($\phi$J5mm) on polyethylene film.

  • PDF

Stain removal on ivory using cyclododecane as a hydrophobic sealing agent

  • Lee, Hyun-Sook
    • KOMUNHWA
    • /
    • no.66
    • /
    • pp.87-112
    • /
    • 2005
  • Stain removal on ivory has been, for a long time, considered an undesirable treatment in conservation field because ivory is hygroscopic and anisotropic, having different physical properties in different directions. Cyclododecane, which sublimes at room temperature, has been investigated for its use in conservation field since 1995, as a reversible temporary consolidant, sealing agent or coating, water repellent, and barrier layer. This research aims to remove stains on ivory, temporarily protecting the none-stained area or painted area from methanol, acetone or the aqueous cleaning system using cyclododecane as a hydrophobic sealing agent. This research also aims to obtain information regarding whether cyclododecane can be safely and effectively used on archaeological wet ivory. Melted cyclododecane and saturated solutions of cyclododecane in mineral spirits, and hexanes were applied to ivory samples. Application methods, working properties of cyclododecane on ivory, and effect of cyclododecane coating on moisture content of wet ivory were evaluated. The sealing layer formed by molten cyclododecane or by saturated cyclododecane solution in hexane or saturated cyclododecane solution in mineral spirits did not form a secure contact with the surface of the highly polished ivory. The sealing formed with two different layers, in which saturated cyclododecane solution in hexane was applied initially and then molten cyclododecane was applied over the first layer, was found to securely protect the painted area. When the wet samples were kept in 100% RH environments for a month, active mold growths were observed except in the samples sealed with molten cyclododecane. In conclusion, cyclododecane was an efficient hydrophobic sealing agent to protect painting area while cleaning stains on ivory. It also prevented mold growing on wet ivory and wet bone. Evenness of cyclododecane film on ivory will be determined in UV light. Analytical techniques will include visual observation, polarized light microscopy, Scanning Electron Microscope, and Gas Chromatography.

  • PDF