• Title/Summary/Keyword: screw loosening torque

Search Result 70, Processing Time 0.021 seconds

Influence of the implant abutment types and the dynamic loading on initial screw loosening

  • Kim, Eun-Sook;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • PURPOSE. This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS. Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at $30^{\circ}$ to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for $10^5$ cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (${\alpha}$=0.05). RESULTS. Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION. The abutment types did not have a significant influence on short term screw loosening. On the other hand, after $10^5$ cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not.

Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading

  • Lee, Joo-Hee;Cha, Hyun-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.415-421
    • /
    • 2018
  • PURPOSE. This study investigated the effects of abutment screw lengths on screw loosening and removal torque in external connection implants after oblique cyclic loading. MATERIALS AND METHODS. External connection implants were secured with abutment screws to straight abutments. The abutment-implant assemblies were classified into seven groups based on the abutment screw length, with each group consisting of five assemblies. A cyclic load of 300 N was applied at a $30^{\circ}$ angle to the loading axis until one million cycles were achieved. Removal torque values (RTVs) before and after loading, and RTV differences were evaluated. The measured values were analyzed using repeated measures of analysis of variance with the Student-Newman-Keuls multiple comparisons. RESULTS. All assemblies survived the oblique cyclic loading test without screw loosening. There was a significant decrease in the RTVs throughout the observed abutment screw lengths when the abutment-implant assemblies were loaded repeatedly (P<.001). However, the abutment screw length did not show significant difference on the RTVs before and after the experiment when the abutment screw length ranged from 1.4 to 3.8 mm (P=.647). CONCLUSION. Within the limit of this experiment, our results indicate that the abutment screw length did not significantly affect RTV differences after oblique cyclic loading when a minimum length of 1.4 mm (3.5 threads) was engaged. These findings suggest that short abutment screws may yield stable clinical outcomes comparable to long screws in terms of load resistance.

AN INFLUENCE OF ABUTMENT MATERIALS ON A SCREW-LOOSENING AFTER CYCLIC LOADING (임플랜트 상부구조의 재료가 반복하중 후 나사풀림에 미치는 영향)

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.240-249
    • /
    • 2007
  • Statement of problem: A phenomenon of screw-loosening in implant abutment is frequently occurred in a single and multiple implant restoration. Purpose: This study was performed to evaluate an effect of abutment material on screw-loosening before and after a cyclic loading. In a single-tooth implant, different materials of abutment, Type III Gold alloy and Zirconium composite$(ZrO_2/Al_2O_3)$ were used. Material and method: The Gold alloy(Type III) and Zirconium composite$(ZrO_2/Al_2O_3)$ were used to make a superstructure of implant, the one of types of UCLA, Each group was constituted of 5 sample with a 30-degree offset angulated loading platform. The external hexagonal fixture was rigidly hel d in a special holding zig to ensure solid fixation without rotation during the tightening and a cyclic loading. A Titanium-alloy screw was used to connect and controlled to be tighten in 20Ncm torque by a digital torque gauge. A 20 times of consecutive closing/opening cycle were performed to evaluate the immediate torque loss. In 5 sample of each material group, an initial opening torque was recorded during 3 closing/opening cycle, then 2Hz, 200N, 1,000,000 cyclic loadings were performed, then a opening torque was evaluated. Result & Conclusion: 1. In this limited study, titanium alloy screw tightened in 20Ncm, a cold-welding phenomen on was not observed during the 20 times of closing/opening cycle(p=0.11, p=0.18). 2. In titanium alloy abutment screw, repeated opening and closing of the screw caused to progressive decrease of opening torque(p=0.014). 3. The difference in preload of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant(p=0.78). 4. The difference in torque loss of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant after 2Hz,200N, 1,000,000 cyclic loading(p=0.92). 5. In titanium alloy abutment screw tightened by 20Ncm, the screw loosening was not significant on each group after 2Hz, 200Ncm, 1,000,000 cyclic loading(p=0.59).

Biomechanical behavior of CAD/CAM cobalt-chromium and zirconia full-arch fixed prostheses

  • Barbin, Thais;Silva, Leticia Del Rio;Veloso, Daniele Valente;Borges, Guilherme Almeida;Presotto, Anna Gabriella Camacho;Barao, Valentim Adelino Ricardo;Groppo, Francisco Carlos;Mesquita, Marcelo Ferraz
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.329-337
    • /
    • 2020
  • PURPOSE. To verify the influence of computer-aided design/computer-aided manufacturing (CAD/CAM) implant-supported prostheses manufactured with cobalt-chromium (Co-Cr) and zirconia (Zr), and whether ceramic application, spark erosion, and simulation of masticatory cycles modify biomechanical parameters (marginal fit, screw-loosening torque, and strain) on the implant-supported system. MATERIALS AND METHODS. Ten full-arch fixed frameworks were manufactured by a CAD/CAM milling system with Co-Cr and Zr (n=5/group). The marginal fit between the abutment and frameworks was measured as stated by single-screw test. Screw-loosening torque evaluated screw stability, and strain analysis was explored on the implant-supported system. All analyses were performed at 3 distinct times: after framework manufacturing; after ceramic application in both materials' frameworks; and after the spark erosion in Co-Cr frameworks. Afterward, stability analysis was re-evaluated after 106 mechanical cycles (2 Hz/150-N) for both materials. Statistical analyses were performed by Kruskal-Wallis and Dunn tests (α=.05). RESULTS. No difference between the two materials was found for marginal fit, screwloosening torque, and strain after framework manufacturing (P>.05). Ceramic application did not affect the variables (P>.05). Spark erosion optimized marginal fit and strain medians for Co-Cr frameworks (P<.05). Screw-loosening torque was significantly reduced by masticatory simulation (P<.05) regardless of the framework materials. CONCLUSION. Co-Cr and Zr frameworks presented similar biomechanical behavior. Ceramic application had no effect on the biomechanical behavior of either material. Spark erosion was an effective technique to improve Co-Cr biomechanical behavior on the implant-supported system. Screw-loosening torque was reduced for both materials after masticatory simulation.

THE INFLUENCE OF ABUTMENT SCREW LENGTH AND REPEATED TIGHTENING ON SCREW LOOSENING IN DENIAL IMPLANT (치과용 임플랜트에서 지대주 나사의 길이 및 반복 조임 횟수가 지대주 나사의 풀림에 미치는 영향)

  • Choi Jin-Ho;Yang Jae-Ho;Cho Won-Pyo;Lee Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.432-442
    • /
    • 2006
  • Statement of problem: One of common problems associated with dental implant is the loosening of abutment screws that retain the implants. Purpose : This study was performed to investigate the influence of abutment screw length and repeated tightening on screw loosening in dental implant. Material and method: Forty nine Hexplants (13mm length, 4.3mm diameter, Ti grade IV, Warantec. Co. Ltd. Seongnam, Korea) and cementation type abutments(straight abutment) and abutment screws (0.4mm/pitch) were divided into 7 groups, depending on abutment screw length. Each implant and abutment was tightened to 30Ncm by torque controller(MGT50, MARK-10 Inc., USA) and the removal torque values were measured during 10 consecutive closure/opening trials. Results and Conclusion: The results of comparing the removal torque value are as follows : 1. There is no significant difference in the removal torque value between groups in 10 consecutive closure/opening trials (p = 0.97). 2. If the fractured abutment screw is engaged in longer than 2.425 thread length, there is no significant difference in the preload between the fractured abutment screw and the new abutment screw when both are equally tightened to 30 Ncm. 3. The removal torque value in the 1st trial(24.510 Ncm) was lower than that in the 2nd, 3rd, 4th, 5th, 6th, 7th trials and the removal torque value in the 2nd trials(25.551 Ncm) was maximum and was decreased in 1311owing trials. The removal torque value in the 1st trial was significantly lower than that in the 2nd, 3rd, 4th trials and was significantly higher than that in the 8th, 9th, l0th trials(p<0.05). 4. In the 2nd, 3rd, 4th, 5th, 6th, 7th trials, the abutment screw was mainly influenced by settling effect and the higher preload was obtained In the 8th, 9th, l0th trials, the abutment screw was mainly influenced by adhesive wear and the progressively lower preload was obtained.

EFFECT OF THE SURFACE MODIFICATIONS AND THE USE OF WASHER ON THE REVERSE TORQUE OF THE IMPLANT PROSTHETIC GOLD RETAINING SCREW

  • Lee, Jae-Hyuck;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.246-261
    • /
    • 2002
  • The screw loosening is one of the complications that happen frequently in dental implant prostheses. The purpose of this study was to evaluate the changes of reverse/loosening (opening) torque of the screw according to the surface modifications by sandblasting and 24K gold electroplating as well as to determine the possibility of the clinical use of a washer in dental implant. The reverse torque of 4 experimental conditions(control, sandblasted, use of washers, electroplasted) was measured by digital torque gauge (Model MGT50Z, Mark-10 Corp., 458 West John Street Hicksville, NY 11801 USA). Electronic torque controller (Nobel Biocare DEA 020) was used in fastening the gold screws into abutment replicas. Mixed Linear Model Analysis method was used for statistical analysis. To examine the changes of screw thread surface, microphotographs were taken by Olympus PME-3 metallurgic microscope (Olympus Optical Co. Ltd., Tokyo, Japan). Within the limitations of this study, the following results were drawn: 1. The surface modifications of the gold screws and the use of a washer have significantly affected the reverse torque value compared to the control group (P<0.01). 2. Sandblasting and electroplating treatments demonstrated significantly higher reverse torque value than that of control group. 3. The use of a washer may be one of the useful clinical methods that prevent the screw loosening. However, further studies are necessary for the material selection and design of the washer.

Effect of connection type on the screw loosening of implant system (지대주와 고정체의 체결방법에 따른 임플란트의 풀림거동에 관한 연구)

  • Choi, Jae-Min;Chun, Heoung-Jae;Han, Chong-Hyeon;Lee, Soo-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.486-491
    • /
    • 2004
  • A comparative study on the implant screw loosening under the initial clamping force and cyclic loads was conducted. The experiments were performed to evaluate the screw loosening behavior of the internal and external implant systems. It was found that the screw loosening torques of implant systems were significantly affected by the way how the abutment and fixture were connected due to the difference in the load transfer mechanism between abutment and fixture.

  • PDF

EFFECT OF TIN COATING OF ABUTMENT SCREW ON DETORQUE FORCE

  • Kim, Hee-Jung;Choe, Han-Cheol;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.329-338
    • /
    • 2007
  • Purpose. The aim of this study is to evaluate the effect of TiN coating of abutment screw on the unscrewing torque. Material and methods. Titanium and Gold-Tite abutment screws were classified into two groups, Group A and C respectively, as control groups. Titanium abutment screws with TiN coatings were also classified into two groups, Group B and D, as experimental ones. Group A and B were tightened to 20 Ncm input torque, and Group C and D were tightened to 32 Ncm torque. Detorque values were measured with digital torque gauge during repeated closing and opening experiment. Results. Abutment screws with TiN coating (Group B and D) showed statistically significant higher mean detorque values than those of Group A and C. Discussion. Physical properties of TiN coating, such as low friction coefficient, high hardness and wear resistance, might contribute to higher detorque values. Conclusion. It is suggested that TiN coating of abutment screw help to reduce the risk of screw loosening and improve the stability of screw joint.

THE STUDY ON THE REMOVAL TORQUE OF THE DIAMOND LIKE CARBON COATED TITANIUM ABUTMENT SCREWS (DLC 표면 처리에 따른 임플랜트 지대주 나사의 풀림 현상에 관한 연구)

  • Koak Jai-Young;Heo Seong-Joo;Chang Ik-Tae;Yim Soon-Ho;Lee Jong-Yeop;Lee Kwang-Ryeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.128-135
    • /
    • 2003
  • Statement of problem : Implant screw loosening remains a problem in implant prosthodontics. Some abutment screws with treated surfaces were introduced to prevent screw loosening and to increase preload. DLC(Diamond Like Carbon) film has similar properties on hardness, wear resistance, chemical stability, biocompatibility as real diamond materials. Purpose : The purpose of this study was to investigate the effect of lubricant layer on abutment screw and to discriminate more effective method between soft lubricant and hard lubricant to prevent screw loosening. Material and method : In this study, $1{\mu}m$ thickness DLC was used as protective, lubricating layer of titanium screws and 3 times removal torque was measured on the abutment screws to investigate the difference in 10 coated and 10 non-coated abutment screws. Results : The results indicated that the implants with DLC coating group were not more resistant to the applied force in screw loosening. At 32Ncm, the 3 times removal torque in DLC group were $27.75{\pm}2.89,\;25.85{\pm}2.35$ and $26.2{\pm}2.57$. The removal torque in no-coated abutment screws were $27.85{\pm}4.23,\;27.35{\pm}2.81$ and $27.9{\pm}2.31$, respectively. Conclusion : The lubricant layer used in this study was Diamond Like Carbon(DLC) and it have a properties of hard and stable layer. The DLC coating layer was hard enough to prevent distortion of screws in the repeated unscrewing procedure in clinical situation. The reduced friction coefficient in hard DLC layer was not effective to prevent screw loosening.

Biomechanical considerations for the screw of implant prosthesis: A literature review (임플란트 나사에 적용되는 생역학적 원리: 문헌고찰)

  • Im, So-Min;Kim, Dae-Gon;Park, Chan-Jin;Cha, Min-Sang;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • Purpose: This article attempted to determine the factors affecting the preload and screw loosening. Methods: Available clinical studies from 1981 to 2008 from the PUBMED that presented screw loosening data and review articles regarding screw joint stability were evaluated. Eleven studies dealing the biomechanical principles of the screw mechanics were reviewed. Moreover, the results of our data were included. Results: The frequency of screw loosening was consequently reduced due to the advancement in torque tightening with torque wrench, screw material, coating technique for reducing the frictional force, and thread design, etc. If preload in the screw falls below a critical level, joint stability may be compromised, and the screw joint may fail clinically. The types of fatigue failure of screw were divided to adhesive wear, plastic deformation, and screw fracture. Conclusion: An optimum preload is essential to the success of the implant-abutment complex. To maintain optimum preload, using a torque wrench and re-tightening at recall time were needed.